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Abstract

Transketolase belongs to the family of thiamin diphosphate dependent enzymes. The aim of this study was to
establish a bacterial expression system for human transketolase in order to investigate the functional characteristics
of mammalian transketolases. The level of recombinant human enzyme expressed in Escherichia coli was modest.

Puri®cation of recombinant transketolase and separation from the E. coli enzyme has been greatly simpli®ed by
means of a non-cleavable hexa-histidine tag. The highest speci®c activity was 13.5 U/mg and the Km values were
0.2720.02 and 0.5120.05 mM for the substrates D-xylulose 5-phosphate and D-ribose 5-phosphate, respectively.
Binding of cofactors to the apoenzyme showed the expected hysteresis. Without preincubation, the Km values for

thiamin diphosphate and for Mg2+ were, respectively, 4.120.8 and 2.520.4 mM, but after 1 h of preincubation
these values were 85216 nM and 0.7420.23 mM. The kinetic constants are similar to those of the native enzyme
puri®ed from human erythrocytes. Despite the modest expression level the reported system is well suited to a variety

of functional studies. # 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Transketolase (TK), a homodimeric, ubiquitous

enzyme of energy metabolism, requires thiamin

diphosphate (ThDP) and a divalent metal ion

(e.g. Mg2+) as essential cofactors and catalyses

the transfer of glycoaldehyde moieties from

ketoses to aldoses in the pentose phosphate path-

way (PPP). This pathway requires great ¯exibility

in order to respond appropriately to metabolic

demands. Depending on the state of the cell the

PPP can provide precursors for the biosynthesis

of nucleotides and amino acids, or donate metab-

olites for glycolysis. Together with transaldolase,

TK catalyzes the interconversion of those com-

pounds; it has been suggested for Saccharomyces

cerevisiae that TK and transaldolase control the

¯ux of metabolites through the PPP [21, 24] and

NMR studies on human hemolysates demon-

strated that TK has an high ¯ux-control coe�-

cient, indicating that this enzyme indeed exhibits
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a controlling function on the non-oxidative limb

of the PPP [2].

Due to its central role in energy metabolism TK

has been under investigation for many years. The

enzyme has been isolated from various organisms,

but only a few TKs, namely those from Escherichia

coli [28], S. cerevisiae [9, 12, 15, 18, 33, 34] and

human [4, 5, 13, 30, 32], have been characterised

well. A comparison between these three homolo-

gous enzymes has revealed that physicochemical

properties such as the pH optimum or the stab-

ility of the activity are very similar. Previously,

the three-dimensional structure of S. cerevisiae

TK has been resolved to 2.0 AÊ [18] and prelimi-

nary crystallographic data on the E. coli enzyme

have been published [16]. This structural infor-

mation allowed the identi®cation of residues pre-

dicted to be involved in various parts of the

enzyme's function, e.g. catalysis, subunit inter-

action, substrate and cofactor binding. A detailed

protein sequence comparison between most

known TKs has shown that particular residues

are conserved [23]. However, while bacterial, fun-

gal and plant sequences could readily be aligned,

major gaps had to be introduced into the mam-

malian sequences to allow alignment [23]. This

result is consistent with the smaller subunit mol-

ecular weight of mammalian TKs. Also, an entire

a-helix (a-11) appears to be absent in mammalian

TKs which certainly would have an e�ect on

these enzymes' overall structure. Consistent with

those ®ndings it was observed that mammalian

and nonmammalian TKs display distinct di�er-

ences in interactions between the subunits, in

cofactor binding and in their hysteretic beha-

viour. Additionally, the mammalian TKs have a

much smaller range of utilizable substrates than

the other TKs. Clearly there is evidence for func-

tional and structural variations between the two

groups. An examination of the subtle functional

variations between bacterial, fungal and human

TKs may lead to a more detailed analysis of the

catalytic mechanism of these three TKs and ulti-

mately to a more comprehensive understanding

of ThDP-dependent enzyme catalysis in general.

Furthermore, the elucidation of the three-dimen-

sional structure of the human enzyme would

allow comparison of the structures of the three
enzymes.

The availability of a recombinant expression
system for a protein of interest provides a tool
for its rapid and simple production, its easy ma-
nipulation and facilitates studies on the structure
and function of the protein. Homologous ex-
pression systems for TK from E. coli and S. cere-
visiae have been reported previously [28, 29].
Here we describe an heterologous expression sys-
tem for the human enzyme.

2. Materials and methods

2.1. Bacterial strains and plasmids

E. coli strain DH5a was obtained from Gibco
BRL. Plasmid pTrc99A was purchased from
Pharmacia and the heat-inducible expression vec-
tor pCL476, containing the sequence coding for a
non-cleavable hexa-histidine tag adjacent to the
multiple cloning site, was a gift from Dr. N.E.
Dixon, Research School of Chemistry, Australian
National University. All E. coli cultures contain-
ing the recombinant constructs were maintained
on LB plates [19] with 100 mg/ml ampicillin. For
long term storage liquid cultures were kept in
15% glycerol and stored at ÿ208C.

2.2. DNA manipulation

Ligations, transformations, restriction digests,
preparation of plasmid DNA and agarose gel
electrophoresis were carried out according to
standard protocols [19]. Automated sequencing,
applying the dideoxy chain termination
method [20], was performed using the ABI
PRISM Dye Terminator Cycle Sequencing
Ready Reaction kit according to the manufac-
turer's instructions. PCR and sequencing reac-
tions were carried out on a Perkin Elmer Cetus
model 480 PCR machine.

2.3. Construction of pCL476/TK

The cloning of the 3'-end of human transketo-
lase by our laboratory has been reported pre-
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Fig. 1. Cloning strategy for human TK. The AlwNI/HindIII fragments of pGS2 and pGS3 were simultaneously cloned into pGS1

digested with HindIII, generating clone pTrc99A/TK which contains the complete DNA sequence of recombinant TK. PCR ampli-

®cation of TK introduced an NdeI site at the 5'-end; the NdeI/EcoRI fragment was cloned into the multiple cloning site of

pCL476.
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viously (clone pTK2) [1]. Subsequently, pTrc99A/
TK and pCL476/TK were constructed as follows
(Fig. 1). First, an EcoRI fragment of pTK2 was
inserted into the polylinker of pTrc99A, produ-
cing pGS3. Next, total RNA from human brain
tissue was extracted using the GlassMAX RNA
Microisolation Spin Cartridge System from
Gibco BRL. Respective fragments containing
nucleotides 1 to 498 (5'-end) and 303 to 1419
(middle region) of the coding region of TK were
ampli®ed by RT-PCR, using the GeneAmp RNA
PCR kit from Perkin Elmer. The design of the
oligo nucleotides, used for the ampli®cation of
the RT-PCR fragments, was based on the pre-
viously published human TK sequence [1, 17].
The following primers were used: (a) 5'-end 5'-
TGC CGC ACC ATG GAG AGC TAC CAC-3'
(forward) and 5'-TTG TCC CCA AGC TTG
TAG CTG GG-3' (reverse) and (b) middle region
5'-TGA ACC TGA GGA AGA TCA GCT
CCG-3' (forward) and 5'-CAT AGC CAG ATC
TTA AGG GGC CAT CTG GG-3' (reverse).
These fragments were cloned into pTrc99A, pro-
ducing pGS1 and pGS2, respectively. pGS2 and
pGS3 were digested with AlwNI and HindIII and
the AlwNI/HindIII fragments from these two
constructs were simultaneously cloned into pGS1
digested with HindIII. The resulting construct
(pTrc99A/TK) contains the entire coding region
for TK, which was ampli®ed by PCR and cloned
into the NdeI and EcoRI site of pCL476, produ-
cing pCL476/TK.

2.4. Sequence analysis and comparison

The complete nucleotide and deduced amino
acid sequences were compared with those of fetal
human TK [14] and the previously deposited
sequence of human TK published by McCool et
al. [17]. The sequences were aligned unambigu-
ously by use of Clustal W software [31] and no
further re®nement was necessary.

2.5. Expression and protein puri®cation

For large scale expression of TK the cells were
grown in 10 l of 2YT medium [19] (containing
100 mg/ml ampicillin) at 308C in a 20 l Chemap

fermenter with aeration and stirring (320 rpm).
When the cell culture reached an OD600 of 0.5
the temperature was rapidly increased to 428C.
The induction was maintained for 3 h. The cells
were harvested by centrifugation at 48C for
16 min at 2600g. The cell pellet was stored at
ÿ208C.

Recombinant TK was puri®ed as follows. The
cells were resuspended in lysis bu�er (6 ml lysis
bu�er per g cell paste), containing 100 mM
KH2PO4 (adjusted to pH 6.8 with KOH),
0.1 mM ThDP, 1 mM MgCl2, 14.2 mM b-mer-
captoethanol, 0.6 mg/ml lysozyme, 0.01 mg/ml
DNaseI, 20 mg/ml leupeptin, 0.02 U/ml aprotinin,
0.3 mg/ml bestatin and 100 mM phenylmethylsul-
phonyl ¯uoride. The cells were disrupted using a
French press (40 K Rapid-Fill Cell; SLM
AMINCO Instruments). The lysate was puri®ed
by means of a one-step hydroxylapatite batch
procedure (1 g hydroxylapatite (Riedel-deHaen)
per 6 ml lysate) [4, 7]. The protein was eluted
with 20% ammonium sulphate and precipitated
by addition of ammonium sulphate to 90% sat-
uration. The mixture was stirred vigorously and
incubated overnight at 48C. The precipitate was
collected by centrifugation at 48C and 17000g for
20 min and resuspended in a minimal volume of
binding bu�er, containing 20 mM Tris (adjusted
to pH 7.9 with HCl), 5 mM imidazole, 500 mM
NaCl, 1 mM MgCl2 and 0.1 mM ThDP. The
protein mixture was desalted by dialysis at 48C
for 16 h against three changes of binding bu�er.
TK was further puri®ed by a�nity chromatog-
raphy on a nickel±iminodiacetic acid (IDA)±
Sepharose 6BFF column (5 ml, Novagen), equili-
brated with binding bu�er. The enzyme was
eluted by a linear imidazole gradient from 5 mM
to 1 M. Peak fractions were pooled and stored at
48C.

2.6. Preparation of apoenzyme

All glassware, plastic cuvettes and tips were
soaked in 20% (v/v) HNO3 and rinsed several
times with metal-free water (18.2 mO/cm, MilliQ
water puri®cation system, Millipore). Reagents
used for the preparation of apotransketolase and
activity assays were passed through a Chelex 100
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(BioRad) column to remove divalent metal ions.
The removal of cofactors from human TK has
been described previously [5].

2.7. Analytical methods

TK activity was measured by a coupled
enzyme assay at 378C based on the method of
Smeets et al. [27] as modi®ed by Booth and
Nixon [5]. In general, unless otherwise stated,
reactions were started by addition of TK. The
amount of enzyme was chosen so that a steady
decrease of NADH absorption could be moni-
tored over 10 to 15 min. The activity unit is
de®ned as the amount of enzyme that catalyses
the formation of 1 mmol of glyceraldehyde 3-
phosphate per min.

ThDP stock solutions were assayed spectro-
photometrically; the e277 is 8520 Mÿ1 cmÿ1. The
Mg2+ concentration in stock solutions was
measured by atomic absorption spectropho-
tometry at 285.5 nm. Protein concentrations were
measured by means of the bicinchoninic acid
protein assay kit (Sigma Chemical Company)
according to the manufacturer's instructions.

2.8. Substrate and cofactor binding studies

Michaelis constants for the donor substrate D-
xylulose 5-phosphate (X 5-P) and acceptor sub-
strate D-ribose 5-phosphate (R 5-P) were deter-
mined from the dependence of the enzyme
reaction velocity upon substrate concentration.
Substrate concentrations in each assay ranged
from 10 mM to 50 mM for R 5-P (in the presence
of a saturating concentration, 2 mM, of X 5-P)
and 1 mM to 5 mM for X 5-P (10 mM R 5-P).
Reactions were started by the addition of ap-
proximately 8 mU of holoTK.

The cofactor a�nity of recombinant TK was
measured from the dependence of the activity of
the reconstituted holoenzyme upon cofactor con-
centration. The assay mixtures contained saturat-
ing concentrations of one cofactor and varying
concentrations of the other. Cofactor concen-
trations in each assay ranged from 0.1 mM to
5 mM for Mg2+ (1 mM ThDP) and 1 nM to
1 mM for ThDP (1.2 mM Mg2+). The concen-

trations of the remaining reagents were as
described above. The concentration of enzyme in
each assay was approximately 5 nM in subunits.
An aliquot of apoenzyme, stored at ÿ1968C, was
thawed at 48C and appropriately diluted with
assay bu�er [5]. The reactions were started by
mixing apoTK simultaneously with the remaining
reagents (`immediate' assay) or after preincu-
bation of apoTK with MgCl2 and ThDP in assay
bu�er at 248C for periods of 60 and 180 min
(`preincubation' assay). In the latter case the
reactions were started by addition of the remain-
ing reagents.

Experimental data were analysed by nonlinear
regression using either DNRPEASY [8] or
GraphPAD Inplot computer programs.

3. Results and discussion

3.1. Sequence and sequence comparison

The entire sequence of both strands of the
insert in pTrc99A/TK was determined. The cod-
ing region comprises 1869 nucleotides which are
translated into a protein of 623 amino acid resi-
dues with a calculated subunit molecular weight
of 67.8 kDa. Comparison of TK sequences from
various species have revealed two regions of high
homology [23]. The ®rst region, termed the
ThDP-binding motif [11], is located between
amino acid residues 154 and 177 and is found in
all known ThDP-dependent enzymes. The second
region, located between residues 415 and 450,
displays the highest degree of sequence similarity
and has been shown to be characteristic of TK.
This motif has been designated the TK motif [23].

Singleton and coworkers isolated various
human TK cDNA clones from healthy controls
and patients su�ering from the neurodegenerative
disorder Wernicke±Korsako� (WK) syndrome.
Their study clearly demonstrated that there is no
genetic defect underlying this disorder [17], dis-
proving the hypothesis that was originally pro-
posed by Blass and Gibson [3]. Curiously, the
nucleotide sequence deposited in GenBank by
Singleton and coworkers di�ers from their con-
sensus sequence, derived from controls and WK
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patients, in several point mutations, four of
which are nonsilent [17] The submitted sequence
has been cloned in a plasmid and appeared
intended for further studies, e.g. expression and
site-directed mutagenesis. Although the charac-
teristics of this construct have not yet been
reported Singleton and coworkers have gone on
to present results from site-directed mutagenesis
studies [26], leaving open the question of
whether unintended sequence variations are pre-
sent in their expression system. It was our inten-
tion to minimize the number of mutations in
our construct. This task was addressed by com-
paring our sequence with those of Singleton and
coworkers and another complete cDNA
sequence derived from the gene coding for fetal
human TK [14]. The result is summarized in
Table 1. In total, there are seven amino acid
substitutions but, interestingly, in each case only
one of the sequences di�ers whereas the others

are identical at each of these positions, and the
sequence we have determined always has a
match in at least one of the other sequences.
Furthermore, except for three synonymous sub-
stitutions, it is identical to the consensus
sequence derived from the TK cDNA of con-
trols and WK patients [17]. This sequence com-
parison further con®rms that the sequence
submitted to GenBank by Singleton and collab-
orators contains four nonsynonymous substi-
tutions, an observation which is supported by
an alignment including TK sequences from
rodents [23].

In summary, this comparison indicates that
there are no genuine variations between the
reported human TK cDNA sequences. The con-
struct used in this study appears to be identical
to the consensus sequence without any undesired
mutations, in contrast to the cDNA sequences
reported previously [14, 17].

Table 1

Nucleotide and corresponding amino acid variants detected during sequence comparisons. Bases 1754±1755 and 1756±1758 belong

to the same codons

Base This study Aa Bb Cc E�ectd

88 A T A A T304 S

91 A T A A T314 S

93 T T A G none

137 A T A A E464 V

465 C T C C none

534 C T T T none

582 T G T A none

1095 T C T T none

1209 C G C C none

1230 T C C C none

1276 C G C C P4264 A

1754 C C C A T5854K

1755 C C C A none

1756 C C C A

1757 A A A C H5864 T

1758 C C C A

1759 C C C A L5874M

1794 G A G/Ae G none

a cDNA sequence submitted to GenBank by Singleton and coworkers [17].
b Consensus sequence derived from two WK patients and two healthy controls [17].
c Fetal human TK [14].
d Amino acids labelled in 1-letter code; the `E�ects' column shows the di�erences between the sequence of this study (left) and

the one with a presumed mutation (right).
e Three sequences have a G and one an A in this position [17].

G. Schenk et al. / The International Journal of Biochemistry & Cell Biology 30 (1998) 369±378374



3.2. Expression and puri®cation

Originally, human TK was expressed in
pTrc99A (clone pTrc99A/TK). However, the
modest yield rendered protein puri®cation di�-
cult. Cloning into pCL476 resulted in an N-term-
inal hexa-histidine tag fused to TK which
simpli®ed puri®cation signi®cantly. The synthesis
of recombinant human TK in E. coli was induced
by a rapid temperature shift from 30 to 428C,
which led to an inactivation of the thermolabile l
repressor with the concomitant derepression of
the strong PR and PL tandem promoters [10].
SDS-PAGE analysis of samples collected prior to
induction and at various time points after the
temperature shift showed that the expression
level was still modest. Approximately 75% of the
TK activity was in the soluble fraction (speci®c
activity: 0.1820.03 U/mg, Table 2). However,
the assay for TK activity does not di�erentiate
between the recombinant and the native E. coli
enzyme; only approximately 35% of the total ac-
tivity was due to the human enzyme, estimated
by comparing TK levels in E. coli expressing
only native E. coli TK and cells expressing both
E. coli TK and recombinant human TK.
Assuming a speci®c activity of approximately
17 U/mg for homogeneous human TK [4] the
recombinant protein represents only 0.21% of
the total protein. Various di�erent bacterial host
cells, plasmids and growth conditions have been
tested unsuccessfully for improvement of the ex-
pression level. Rare codon usage and unfavour-
able tRNA distribution could be reasons for the

lack of high expression by this system [6].
Although the usage of rare codons may not
account solely for low levels of expression it is
evident that an mRNA with an unbalanced
codon frequency will have di�erent elongation
rates for di�erent regions of the sequence and
di�erent codons. The likelihood that a particular
tRNA binds to the ribosomal A site depends
strictly on the distribution of all other tRNAs
and any disturbance of this distribution will have
an in¯uence on the speed of the elongation
step [6]. The occurrence of a rare codon may
stall the translation process long enough to ter-
minate transcription prematurely. Di�erent
codon usage between the genes of human and E.
coli transketolase is evident in various synon-
ymous triplets, in particular in those coding for
the amino acids phenylalanine, serine, tyrosine,
proline, arginine, isoleucine, lysine, alanine,
aspartate and glutamate and to a smaller degree
in those coding for leucine, threonine, valine and
glycine [22].

Despite the modest expression, recombinant
human TK could be puri®ed. The result of a
typical puri®cation is summarized in Table 2.
Application of the soluble fraction directly to the
nickel±IDA±Sepharose 6BFF column was tested,
but some of the binding to the column was non-
speci®c. Hydroxylapatite batch chromatography
has been used previously for the puri®cation of
native transketolase from human erythrocytes,
mainly as a means to remove the majority of the
contaminating hemoglobin [4, 13]. These studies
have shown that the native enzyme has a strong

Table 2

Puri®cation of recombinant human TK

Step

Volume (ml) Protein (mg) Activity (U) Spec. Act. (U/

mg)

Recovery (%) Puri®cation

(fold)

Crude extract 315 6400 643 0.10 100 1

Cleared lysate 220 2684 490 0.18 76 1.8

HA-unbounda 127 1016 210 0.20 33 2

HA-eluateb 30 183 60 0.33 9 3.3

Dialysate 31 110 44 0.40 7 4

Fmax
c 2 1.2 16 13.5 2.5 135

a Fraction that did not bind to hydroxylapatite.
b Fraction that eluted from hydroxylapatite in 20% ammonium sulphate.
c Fraction 12 which eluted from the nickel±IDA±Sepharose 6BFF column.
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a�nity for hydroxylapatite and the activity
could be eluted with a high recovery. In our
study less than 60% of the activity bound to
hydroxylapatite (Table 2) and only 12% of
the activity was ®nally eluted in 20% am-
monium sulphate. The fraction that did not
bind to hydroxylapatite was applied to the
nickel±IDA±Sepharose 6BFF and bound pro-
tein was eluted with an imidazole gradient as
described in Section 2. Approximately 0.7%
of the activity bound to the column, which
leads to the proposition that the fraction that
did not bind to hydroxylapatite is almost
exclusively E. coli transketolase. The recombi-
nant enzyme eluted from hydroxylapatite
could be puri®ed further by a�nity chroma-
tography on a nickel±IDA±Sepharose 6BFF
column. The majority of the activity (65%)
eluted in one single 2 ml fraction (Fmax) with
a speci®c activity of 13.5 U/mg (Fig. 2). SDS-
PAGE (Fig. 3) shows that Fmax still contains
a very small amount of contamination and
this may explain in part why the speci®c ac-
tivity is lower than the 17 U/mg obtained for
pure human erythrocyte transketolase [4]. In
total, 36 U of activity were recovered (2.1 mg
transketolase protein).

3.3. Characterisation of recombinant human TK

A disadvantage of the described expression sys-
tem is that the N-terminal hexa-histidine tag,
which simpli®es puri®cation signi®cantly, cannot
be removed by protease treatment, resulting in a
recombinant protein with several extra amino
acids at the N-terminal end. The use of pCL476/
TK as a source of TK, used in structure and
function studies, is only justi®able if the kinetic
properties of the recombinant enzyme agree with
those of the native enzyme. The a�nities for the
major substrates R 5-P and X 5-P and both
cofactors have been determined and compared
with the values obtained for the native enzyme
which has been puri®ed and characterised pre-
viously in our laboratory [4, 32]. Table 3 sum-
marizes the results; the Km values of the
recombinant enzyme for the two major substrates
are within the range of Km values reported for
the native enzyme. TK is known to display hys-
teretic behaviour upon reconstitution of the
apoenzyme with cofactors; addition of apoTK to
an otherwise complete assay reaction mixture
results in a variable lag phase in the reaction pro-
gress curve until steady-state activity is
reached [5, 9, 25, 30]. Preincubation almost

Fig. 2. Puri®cation of recombinant human TK on a nickel±

IDA±Sepharose 6BFF column. Recombinant human TK

eluted from the nickel±IDA±Sepharose 6BFF column in a

single sharp peak at an imidazole concentration of 650 mM.

Fig. 3. SDS-PAGE analysis of the puri®cation of recombinant

human TK. Samples collected during the various stages of

puri®cation were analysed by SDS-PAGE. Lane 1 contains

molecular weight markers as indicated in kDa. Lane 2, crude

extract; lane 3, cleared lysate; lane 4, fraction that did not

bind to hydroxylapatite; lanes 5 and 6, fractions eluted from

hydroxylapatite; lane 7, pooled fractions from lanes 5 and 6

after dialysis; lane 8, fraction that did not bind to the nickel±

IDA±Sepharose 6BFF column; lane 9, Fmax (fraction 12

eluted from the nickel±IDA±Sepharose 6BFF column).
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abolishes this lag phase; however, at very low
cofactor concentrations a preincubation time of
several hours may be necessary [30]. Hence the
apparent Km values of ThDP and Mg2+ decrease
with increasing incubation time; for ThDP the
values range from 4.1 mM for the immediate
assay to 15 nM for the 3 h preincubation assay;
for Mg2+ the values are 2.5 and 0.74 mM for the
immediate (Table 3) and for the 1 h pre-
incubation assay, respectively. The conditions
required to resolve human TK [30] indicate that
ThDP binds tightly to the enzyme. Therefore, it
is likely that the Km values determined from the
preincubation assays re¯ect the actual tight bind-
ing. Unfortunately, it is impracticable to incubate
for even longer periods due to some instability of
the apoenzyme [4, 5, 22, 30].

4. Conclusions

Although the described heterologous ex-
pression system yields only modest quantities of
active recombinant human TK this protein could
be separated from the host TK and highly puri-
®ed. The amount of recovered activity is su�-
cient for kinetic and site-directed mutagenesis
studies. However, in order to obtain enough pro-

tein for crystallization large culture volumes
would need to be handled (r50 l). It is, unfortu-
nately, likely that the observed expression level is
already at its limit for a bacterial host. So far,
this is the ®rst report of an heterologous ex-
pression system for any TK; it complements the
previously reported homologous expression sys-
tems for E. coli and S. cerevisiae TK [28, 29].
These three systems provide the basis for detailed
investigations of the similarities and di�erences
between the three enzymes, which may lead to a
comprehensive understanding of catalysis by TK
and of its role in energy metabolism.
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