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Non-linear Regression and Variance Ratio 
Analysis of Time Based NMR Data 
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Biomedical NMR experiments rely frequently on data obtained sequentially over time. A method is presented for 
analysis of time based NMR data, which allows modelling of continuous and discontinuous functions to observed 
intensity changes by don-linear regression and which uses variance ratio analysis to compare these models 
statistically. The method eliminates many of the usual problems in the parametric analysis of experimental values 
obtained at discrete time points and of comparison of the coefficients of model functions which require 
unsubstantiated assumptions about the distribution of parameters and ignore internal correlations which may 
exist between such parameters. The variance ratio method is illustrated for multiple time courses obtained with 
UNa NMR of perfused rat kidney undergoing hypoxic perturbation in the presence of ditrerent treatments. 

INTRODUCTION 

Biomedical NMR experiments performed on cells, 
intact organs or whole animals rely frequently on data 
obtained sequentially over time. Perturbations such as 
the induction of hypoxia, ischaemia or the addition of 
pharmaceutical substances may be made during such 
experiments. Absolute and relative quantitation of 
peak intensities within a given experiment represent 
the first hurdles to be overcome in the biological inter- 
pretation of such data. Experimental reproducibility 
represents an additional hurdle. Finally, the signifi- 
cance of changes induced by a given perturbation must 
be assessed against the expected biological and 
spectrometer-induced variability inherent in individual 
intensity measurements. 

Inevitably, the assessment of repeatability of biologi- 
cal experiments requires statistical analysis. Although 
limited comparisons of the extent of a given pertur- 
bation at a given time point by Student’s t- or other 
parametric tests are usually valid, such comparisons 
cannot be meaningfully extended to all time points in a 
series. Such an extension ignores the contribution of 
preceding data points to all subsequent intensity meas- 
urements. This contribution is important in under- 
standing the effect of a perturbation in a system moni- 
tored over time, since the rate of change, its time of 
onset and the nature of the baseline before the change 
are important in determining the extent of the final 
change induced by the perturbation. 

One approach is to model the process under obser- 
vation, to fit a mathematical model to the experimental 
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data sets by regression analysis and to compare data 
sets by comparing coefficients, such as rate constants. 
Limitations to this approach include an often arbitrary 
approach to the selection of a suitable mathematical 
model, which is usually decided by inspection alone, 
and assumptions regarding the distribution of the coef- 
ficients. Interestingly, such common biological prob- 
lems have received little attention in standard statistical 
texts. 

A method is presented here for analysis of time 
based NMR data, which allows modelling of both 
continuous and discontinuous functions to observed 
NMR intensity changes and includes a statistical 
method for comparing models. The same approach is 
then extended to compare multiple time courses 
obtained with different treatments in a system undergo- 
ing an hypoxic perturbation. The method is based on an 
approach developed recently for enzyme kinetic 
analysis.’ The application to NMR-derived data is illus- 
trated by analysis of changes in total renal 23Na induced 
by hypoxia in the isolated perfused rat kidney in the 
course of studies of the mechanisms of hypoxic injury. 
(M. Cross et al., submitted). 

EXPERIMENTAL 

Right kidneys from male Wistar rats were perfused at 
constant pressure at 37°C with recirculating 
Krebs-Henseleit bicarbonate buffer (KHB) supple- 
mented with 5 mM glucose, 20 natural amino acids and 
6.7g/dL bovine serum albumin and assed with 95% 
02/5%C02 as described previously?-’ Perfusion pres- 
sure was measured directly within the renal artery using 
a Statham-type pressure gauge through a polyethylene 
line contained within the glass cannula used to perfuse 
the artery. Pressure was held constant by a process 
controller (model 2703, West Division, Gulton 
Industries, IL, USA) which regulated the speed of the 
peristaltic pump (model 501/U, Smith and Nephew, 
Watson-Marlow, UK). Kidneys were perfused at 90- 
110 mmHg. Perfusate oxygen tension was monitored in 
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the arterial line by a Clark-type oxygen electrode, 
attached to a blood gas analyser (PHM 72, 
Radiometer, Copenhagen, Denmark). After 60 min 
normoxic perfusion, hypoxia was induced by switching 
the perfusate gas mixture to 95% N2/5% CO,. 
Perfusion was continued for a further 30min. In all 
kidneys, urine samples were collected under oil in tared 
containers at 5 min intervals and used to measure inulin 
clearance (CiJ and sodium excretion (absolute, U,,V, 
and fractional, FEN,). Only kidneys with an initial 
(30-45 min) Ci, of > 0.5 mL/min and with sufficient 
23Na spectra recorded during this period for baseline 
evaluation were accepted for analysis. 

Data from two separate sets of experiments have 
been used to illustrate the time series analysis of the 
effects of hypoxia under different experimental con- 
ditions. In the first set, the kidney perfusion medium 
was supplemented by increasing the concentration of 
two amino acids such that in group 1, the glycine and 
alanine concentrations were 5 mM each (increased from 
1.18 and 2 . 3 0 m ~ ,  respectively), whereas in group 2, 
the serine and glutamine concentrations were 5 mM 
each (increased from 1.07 and 3.26 mM, respectively). 
The perfusion conditions and media, including mea- 
sured osmolality, were otherwise identical. In the 
second set, five groups of kidneys perfused with normal 
concentrations of amino acids were compared: (a) 
hypoxia, but with a free radical scavenger, 1 5 m ~  
dimethylthiourea (DMTU), added to the recirculating 
perfusate 15 min before inducing hypoxia; (b) hypoxia 
as in (a) but with 1.5 mM DMTU; (c) as for (a) but with 
a different free radical scavenger, 15 mM dimethylsul- 
foxide (DMSO), added to the perfusate; (d) control 
hypoxia; and (e) control normoxia. Normal saline was 
added to the control kidneys in the same volume and at 
the same time as either DMTU or DMSO was added to 
groups (a), (b) or (c), at 45 min. 

Kidneys were perfused within a CXP 300 vertical 
bore magnet in a custom-built NMR probe. The kid- 
neys were freely suspended completely within a 22 mm 
diameter Helmholtz coil tuned to 23Na (79.36 MHz). 
This allowed gravit drainage of both the venous 
effluent and urine. ‘Na spectra were averaged over 
2 min using a pulse length of - 80 p, a sweep width of 
15 OOO Hz and a repetition interval of 0.56 or 1.00 s. A 
reference capillary, containing saturated Na-Dy(PPP), 
was located within one loop of the Helmholtz pair on 
the outside of the plastic shell housing the suspended 
kidney, over which the coil was wound. 

The intensity of each renal 23Na peak was measured 
by integration and calibrated against the intensity of the 
reference 23Na peak at high field, which did not change 
following the induction of hypoxia. To facilitate com- 
parisons between experiments, the total renal 23Na 
intensity was normalized to the average intensity of the 
initial five =Na spectra collected during normoxic per- 
fusion. The normalized total renal =Na intensity was 
averaged at each time point within each group. The 
data from each group were then fitted to a discon- 
tinuous function by non-linear regression (see below). 
This analysis gave estimates and standard errors for 
each fitted parameter plus a residual sum of squares, 
representing the weighted square of the difference 
between the fitted and the experimental values, 
summed over all data points. The significance of differ- 
ences between the parameters for each group was 

analysed from the variance ratio (F test) calculated 
from the residual sum of squares, as described in detail 
below. 

Variance ratio ( F )  test 

When a mathematical model is fitted to an experimen- 
tal data set by regression analysis, a residual sum of 
squares (RSS,) is calculated with u, degrees of freedom 
given by the number of data points minus the number 
of fitted parameters. There may exist a second (or 
‘reduced’) model, a subset of the first (or ‘complete’) 
model, with one or more parameters treated as fixed 
constants or omitted entirely. If this second model is 
fitted to the same data set, a new and greater value of 
the sum of squares, RSS,, with a larger number of 
degrees of freedom, u, ,  will be calculated. The ques- 
tion is whether the increase in the sum of squares 
associated with the reduced model can be ascribed 
purely to statistical fluctuation, given that the complete 
model fits the data well. 

This is addressed’~~ by comparing the variance due to 
lack of fit (o$ in the reduced model with the variance 
due to pure error (of), the latter being assumed to be 
approximated by the variance of the fit by the complete 
model. The value of F is then calculated from the ratio 
of these variances: 

o;~~=(RSS,-RSS,)/(U,- u,) 
.‘,e = RSSJ u, 

F= o$02,, (1) 
If the calculated value of F is larger than that found for 
probabilityp with (u, - u,, u,) degrees of freedom in the 
F statistical tables, then there is less than p chance that 
the increased sum of squares is due to random fluctua- 
tions. That is, there is a significant lack of fit in the 
reduced model, which is therefore rejected as providing 
an unsatisfactory fit. 

An extension of this procedure is to test whether two 
or more data sets fitted by the same model can be 
satisfied when keeping one or more parameter values in 
common.’ Suppose the model is given by y =  
f(a, b, c, x ) ,  where a, b and c are three fitted para- 
meters and x is an independent variable. If there are 
two data sets (with N ,  and N2 data points), each is first 
fitted to this model to give RSSl and RSS2, which are 
then added to give RSS,. The two data sets are then 
merged into a single larger data set, with the source of 
each data point identified by an indicator variable (i). 
We may then fit with a common value, for example, for 
parameter (b) using the modified five-parameter model 
y=f(ai, b, ci, x, i )  to give a value for RSS,. Using 
u, = ( N ,  - 3) + (N2 - 3) and u, = (Nl  + N,) - five degrees 
of freedom, the variance ratio is calculated and inter- 
preted as before. The procedure may be extended to 
combine any number of data sets and to specify any 
combination of common and independent parameters. 

RESULTS AND DISCUSSION 

Mathematical model 

When the rat kidney is subjected to hypoxic perfusion, 
there is an immediate increase in the total renal =Na 
intensity (Fig. 1). This increase has been attributed 
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solely to the intracellular compartment.' We wished to 
describe this process in terms of a mathematical model 
in order to use this model to investigate the effects of 
various pretreatments of the kidneys. 

Since control experiments indicate that the prep- 
aration is stable over 90 min, we concluded that prior to 
inducing hypoxia at 60min, the =Na intensity is con- 
stant. Starting from 60min there is an exponential 
increase in 23Na intensity. Mathematically this can be 
described as: 

where yo is the baseline intensity, A the asymptotic 
intensity change following hypoxia and k is the first- 
order rate constant for the increase in intensity. 

Regression analysis 

DNRP53* is a general non-linear regression computer 
program written in BASIC. It will readily fit equations 
containing a discontinuity such as Eqn (2) to experi- 
mental data. Using this program, the data in Fig. 1 
were fitted to Eqn (2) and yielded the following values 
for the parameters: yo= 1.0016 k 0.0017 ( f SE), A = 
0.130 f 0.006 and k = 0.161 k 0.023min. This fitted line 
can be seen to provide an excellent description of the 
experimental data (Fig. 1). We also fitted a double 
exponential function (with four parameters) to the data 
and obtained a fit which was both visually and statisti- 
cally indistinguishable from the fit to a single exponen- 
tial. A similar result was obtained by fitting the function 
in which the rate of change in intensity is a saturable 
process (the integrated Michaelis-Menten equation- 
with five parameters). Thus, a single exponential 
increase in intensity following anoxia (with three para- 
meters) was taken to be a sufficient description of the 
data. 

Although Eqn (2) fits the data well, it should be 
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Figure 1. Averaged normalized total renal 23Na intensity meas- 
urements (n=4) from perfused rat kidney obtained at 7.2 T for 
perfusate supplemented with glycine and alanine to 5 mM each. 
Hypoxia was induced at 60 min while perfusion continued. The 
solid line shows the fit of Eqn (2) obtained using the DNRP53 
non-linear regression program. The dotted line illustrates the 
effect of arbitrarily decreasing k by one-third with a compensat- 
ing increase in A. Error bars represent k 1SD. 
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Figure 2. Averaged normalized total renal 23Na intensity meas- 
urements from perfused rat kidney. The closed squares show 
the same data as Fig. 1. The open squares illustrate perfusate 
supplemented with serine and glutamine to 5 mM each (also 
n = 4). Other conditions were identical for both sets of kidneys. 
The fitted lines illustrate non-linear regression fits of Eqn (2) to 
the data with final parameters as shown in the bottom section of 
Table 1. 

noted that the values of the fitted parameters may not 
be particularly reliable, despite their relatively small 
SEs. This is because A and k are correlated with one 
another. This means that within limits, a very similar 
exponential curve can be obtained for any rate constant 
provided an appropriate amplitude is selected. For 
example, decreasing k by one-third to 0.107/min will 
give nearly as good a fit if A is increased from 0.123 to 
0.147 (Fig. 1, dotted line). This emphasizes the diffi- 
culty of comparing several curves and suggests that 
comparisons based on the values and SEs of fitted 
parameters could be quite misleading. 

The error quoted for any parameter derived by 
regression analysis here is given as the SE. This repre- 
sents a measure of the uncertainty of the derived 
parameter and is the only relevant error associated with 
parameters derived by a regression analysis of a single 
data set. This should be contrasted with the SD, which 
describes the dispersion of a series of measurements. 
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Figure 3. Effect of adding free radical scavengers to perfusion 
medium prior to the induction of hypoxia. The fitted lines 
represent Eqn (2) except for curve (a), where Eqn (3) has been 
used. The lines have been fitted using the parameters in 
row 11 in Table 2. Treatment key: (a) ----o, 15 mM DMTU; 
(b) - 0 ,  1 . 5 m ~  DMTU; (c) -0, 1 5 m ~  DMSO; 
(d) . . .m ,  control with hypoxia; (e) - +, normoxic control. 
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Thus, a set of replicate measurements such as the mean 
23Na intensity data illustrated in Fig. 1 will have an SD 
associated with each mean and the error bars shown 
represent f 1 SD. For simplicity, the error bars (SD) 
have not been shown at all in Figs 2 and 3. In contrast, 
parameters, such as k in Eqn (2), are quoted with an 
SE. The only situation where an SD of a fitted param- 
eter could be obtained is if there were several identical 
experiments which were each analysed separately. 
From the several values of each fitted parameter, either 
or both an SD and an SE could be calcualted, depend- 
ing on the purpose. Even in this situation, only the SE 
is informative, if the concern is knowing the deviation 
of the parameter from the ‘true’ value. In this latter 
case, an SD will still indicate the dispersion of the 
parameter values within the data set. 

Pretreatment with supplementary amino acids 

When the kidney perfusion medium is supplemented 
with additional glycine and alanine, there is an appar- 
ent reduction in the extent of increase in UNa intensity 
following hypoxia compared with kidneys perfused 
with supplementary serine and glutamine (Fig. 2). We 
wished to assess what the nature of this difference was 
(rate or amplitude) and whether the apparent differ- 
ences were statistically significant. Individual fits of 
Eqn (2) to each data set using DNRP53 yielded the 
parameters listed in the upper part of Table 1. These 
demonstrate that the two curves have similar rate 
constants, but differnt amplitudes. 

The significance of these parameter differences was 
assessed in the following way. A combined data set was 
created wherein the source of each data point remained 
specified by the use of an indicator variable. Equation 
(2) was then fitted to the combined data set with a 

Table 1. Parameter estimates and statistical analysis following 
fitting Eqn (2) to the data illustrated in Fig. 2 (22 
points per curve). Errors represent SEs of the fitted 
parameters 

Baseline Amplitude Rate constant Sum of squares 

Individual fits 
Gly + Ala 1.0016 0.1296 0.1608 10.012 

Ser + Gln 1.0031 0.1976 0.1442 2.770 

Total sum of squares= 12.782 

k0.0017 +0.0064 k0.0247 

f 0.0008 f 0.0046 k 0.0097 

Combined fits: common amplitude 
Gly + Ala 1.0022 0.0689 

k 0.001 9 2 0.0667 

? 0.0076 
Ser + Gln 1.0036 0.1774 

f 0.0017 * 0.0272 

0.1842 26.623 

F= (26.623- 12.782)/(12.782/38)=41.15 (pCO.001) 
Combined fits: common rate constant 
Gly + Ala 1.0017 0.1318 

k 0.001 3 k 0.0043 
0.1505 12.923 

kO.0119 
Ser + Gln 1.0031 0.1950 

fO.0012 f0.0053 
F= 112.923- 12.782)/(12.782/38) =0.42 (p>O.2) 

single common rate constant but allowing each curve to 
have an individual baseline and amplitude. For com- 
parison both curves were also fitted to the combined 
data with a common amplitude but individual baselines 
and rate constants. Parameters obtained by both fits to 
the combined data are shown in the remainder of Table 
1, which also shows the residual sum of squares (RSS) 
obtained with each fitting procedure. 

First consider the fit to a common amplitude (Table 
1). The RSS is 26.623, somewhat larger than the total 
sum of squares, 12.782, obtained by fitting each curve 
separately. However, some increase in the sum of 
squares is to be expected, as the combined fit uses five 
parameters while the individual fits use six, resulting in 
some additional flexibility. The question is whether this 
increase in the sum of squares is statistically significant. 
The variance ratio gave an F value of 41.15 for (1,38) 
degrees of freedom, corresponding to p<O.Ool. In 
other words there is <0.1% chance that this inflated 
sum of squares resulted from statistical fluctuation and 
we can safely conclude that the fit to a common ampli- 
tude is not a satisfactory description of the data. 

The fit with a common rate constant is shown in the 
lower section of Table 1 from which p>O.2. There is 
thus a >20% probability that the small elevation in the 
sum of squares has arisen by chance, so that both 
curves seem to be described by the same rate constant. 
The curves shown in Fig. 2 illustrate the fit with identi- 
cal rate constants. The good agreement between the 
curves and the data provides further evidence that this 
fit represents a good model. 

Effect of free radical scavengers 

The effect of adding either the free radical scavenger 
DMTU or DMSO to the perfusion medium prior to the 
induction of hypoxia is shown in Fig. 3. This illustrates 
a further complication, since the experimental con- 
ditions change twice during the experiment for curves 
(a)-(c): at 45min when the scavenger is added and 
again at 60min when hypoxia is superimposed. In 
analysing these data the first question is whether the 
scavenger itself alters 23Na intensity. This was deter- 
mined by fitting an expanded form of Eqn (2) to the 
data, namely: 

Yo t s 4 5  

A fit of Eqns (2) and (3) to the data for 15 mM DMTU 
gave RSS of 38.534 and 6.580, respectively. 
Comparison using the F test gave F=48.56 for (2, 20) 
degrees of freedom corresponding to p < 0.001, indicat- 
ing that inclusion of the additional relaxation event at 
45 min is necessary to provide an adequate description 
of the data. For 1 . 5 m ~  DMTU, the values were 
F=3.43 and p>0.05,  not significant. Similarly for 
15 mM DMSO, F=0.22 and p>0.2 .  Thus, the intro- 
duction of the scavengers 1.5 mM DMTU and 15 mM 
DMSO at 45min do not perturb the system whereas 
15 mM DMTU does. 

23Na intensity curves from the three treatment groups 
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Table 2. Statistical analysis of the data illustrated in Fig. 3 (25 points per curve). The 
letters (a)-(e) represent the groups described in the Experimental section (see 
also legend to Fig. 3). Equation (3) was fitted to curve (a), while Eqn (2) was 
fitted to curves (b)-(d). An entry such as ‘b, a+c+d’ means that the 
corresponding parameter was forced to have a common value for groups (a), 
(c) and (d) while the fitted curve for group (b) was not constrained in this 
manner. The F values were calculated for each of the reduced models (rows 
2-11) taking row 1 as the complete model. See text for a detailed description. 

Baseline Amplitude Rate constant Sum of squares v F P 
- 1 a, b, c, d a, b. c. d a. b. c. d 37.372 86 - 

2 a + b + c + d  a + b + c + d  a + b + c + d  53.091 95 4.02 <0.001 
3 a, b, c, d a + b + c + d  a + b + c + d  45.836 92 3.25 <0.01 
4 a, b, c, d a. b. c. d a + b + c + d  37.748 89 0.29 >0.2 
5 a, b. c, d a + b + c + d  a, b, c, d 38.014 89 0.49 >0.2 
6 a ,b , c ,d  a , b + c + d  a , b + c + d  45.781 90 4.83 <0.01 
7 a, b, c, d b, a + c + d  b, a + c + d  45.185 90 4.49 CO.01 
8 a, b. c, d c, a + b + s  c, a + b + d  44.225 90 3.94 <0.01 
9 a, b, c, d d, a + b + c  d , a + b + c  37.573 90 0.12 >0.2 

10 a, b, c, d a + b + c + d  d , a + b + c  38.137 91 0.35 >0.2 
11 a, b, c, d d , a + b + c  a + b + c + d  37.843 91 0.22 >0.2 

and the control with hypoxia alone [curve (d) in Fig. 31 
were then combined and analysed systematically (Table 
2). An exponential component commencing at 60 min 
was included in the analysis of all four curves. An 
additional exponential component at 45 min was 
included for the 15 mM DMTU curve alone [curve (a) 
in Fig. 31. The first row of Table 2 corresponds to 
analysing each curve separately so that each experi- 
mental group has a separate baseline, amplitude and 
rate constant. The second row represents the opposite 
extreme with each curve having the same baseline, 
amplitude and rate constant; clearly this does not give a 
satisfactory fit (p <0.001). 

As noted above (Experimental), the mean 23Na 
intensity data for each group was separately normalized 
to a baseline value of unity using spectra collected 
during the 35-45min period. While it would be 
expected that each treatment would have a similar 
baseline after 45 min, we did not wish to force all curves 
to adhere to the same baseline. For this reason, all the 
remaining analyses in Table 2 allow each curve to 
follow an individual baseline. Even with this added 
flexibility, forcing each curve to have the same ampli- 
tude and rate constant (row 3) is not satisfactory 

In rows 4 and 5, the curves are forced to have either a 
common rate constant or amplitude, respectively; in 
each case the F value is low and p > 0.2. Thus, although 
it was not possible to describe all four curves by the 
same rate constant and amplitude, a satisfactory fit can 
be obtained by selecting either one of these as a 
common parameter. This result reflects the correlation 
between the fitted values of the rate constant and 
amplitude as discussed earlier. 

We then went on to pool the curves in four different 
ways, each time using a separate rate constant and 
amplitude for one curve and a common rate constant 
and amplitude for the remaining three; these are shown 
in rows 6-9 of Table 2. Only row 9 was satisfactory, 
where curve (d), the hypoxic control, was analysed 
separately. Thus it appears that each of the scavengers 
has a similar effect, which is significantly different from 
that of the control curve. While the hypoxic control 

(p<O.O1).  

may differ in both the amplitude and the rate constant, 
we tested the possibility that the difference could be 
ascribed either to a difference in rate constant (row 10) 
or amplitude (row 11). Each fit was satisfactory and 
since the latter gave a slightly smaller RSS value, this 
was accepted as giving the best description of the data. 
The adequacy of fit using the parameters from row 11 is 
shown by the fitted lines in Fig. 3. 

Summarizing, the effect of pretreatment with any of 
the three radical scavengers tested was to alter the 
maximum amplitude of the change in UNa intensity 
following the induction of hypoxia without affecting the 
rate constant of the change. Additionally, pretreatment 
with 15 mM DMTU induced an independent increase in 
uNa intensity prior to the induction of hypoxia. 

CONCLUSION 
~~ 

The methods illustrated allow a useful approach to 
modelling and statistical analysis of time series data 
typically acquired in in uiuo and in uitro biomedical 
NMR studies, namely, multiple treatments prior to or 
after an applied system perturbation, resulting in dis- 
continuous functions. An alternative approach could 
have been to fit the same model to each experimental 
data set of sodium intensities and then average the 
parameter values within each group of experiments to 
obtain a parameter mean and SD. Comparing groups 
with different treatments by comparing coefficients 
from parametric analysis could have then been per- 
formed. This requires assumptions regarding the distri- 
bution of the coefficients when usually only a small 
number of experiments are available. Apart from the 
above-mentioned risks of relying on correlated param- 
eters, this would have made the analysis, required to 
compare the multiple subsets shown in Fig. 3 and Table 
2, very complex. By contrast, the analysis presented 
here was relatively simple and intuitive using the 
method outlined. Furthermore the variance ratio 
method provides an objective means of assessing the 
suitability of the model itself. 
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