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The equation of Northrop [197.5, Biochemistry 14, 26441 for calculating intrinsic isotope 
effects from observed deuterium and tritium isotope effects on V/K, in which hydrogen is 
the reference isotope, has been extended to experimental designs using either deuterium or 
tritium as a reference. Partial derivatives of the intrinsic equations allow calculation of the 
relative precision of the three referenced isotope effects and these favor the order deuterium 
> tritium > hydrogen. In comparisons of observed and calculated isotope effects when 
hydrogen tunneling is present, both the precision and the magnitude of the difference was 
greater for intrinsic calculations than for exponentiations based upon a breakdown in the 
Swain-Schaad relationship. o IWO Academic PKSS. h. 

Observed kinetic isotope effects on kinetic parameters (i.e., (VIK),I(VIK), and 
( VHIVD)) of enzyme-catalyzed reactions are usually smaller than intrinsic isotope 
effects (kulk,) because of the presence of multiple and reversible steps preceding 
and following an isotopically-sensitive step (I). Values for intrinsic isotope effects 
may sometimes be calculated from observed deuterium and tritium isotope effects 
on V/K by use of the following equation (2): 

w~m,IwIK), - 1 
= 

kdk, - 1 1 

= 
kH/kD - 

wm,wm, - 1 k,lk, - 1 (k,lkD)'.442 - 1’ HI 

The functional basis of Eq. [l] is the Swain-Schaad relationship (3), 

k,/k, = (k,lk,)'.442, PI 

which has been described as undergoing a “breakdown” when applied to observed 
isotope effects which are less than intrinsic values (4). 

Alternative forms of the Swain-Schaad relationship are possible, with either 
deuterium as a reference, 

kDlkH = (kDlkT)-2.263 [31 

or tritium, 

k,lk, = (kT/kD)3~2"3. 
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It follows that two alternative forms of Eq. [ 11 must also exist, one with deuterium 
as reference, 

oa&wIK), - 1 kdk, - 1 
= = 

(kH/kD)- ’ - 1 
(vIIy)d(V/K-), - 1 (kdk,)-2.263 - 1 (kH/kD)o.“‘+2 - 1’ 151 

and one with tritium as reference (5), 

w‘&mIK), - 1 = kTlkD - 1 = (kH/kD)-o.442 - 1 
(V/IC)T/(V/K)H 1 (kT/kD)3.263 1 (kHlkD)- ‘.442 1 * [61 - - - 

An important question in the use of intrinsic equations is the precision to which 
intrinsic isotope effects can be calculated from experimental effects (6). To answer 
this question, one needs to define the propagation of error, which obeys the first 
derivative of the algebraic function describing changes of the dependent variable 
in terms of changes in the independent variables (7). Writing Eqs. [I], [S], and [6] 
in the general form 

(vIK)$wK), - 1 ub - 1 - 1 z---z (kHlkD)” 
(vIK)$wIK), - 1 UC - 1 (kH/kD>m - 1’ 

the partial differential equations are 

@Wd _ (kHlk,Jm - 1 
a(ab)- + n(k&,)“- ‘(UC - 1) - m(k,lk,)“- ‘(ab - 1) 

and 

W&d _ _ (kH/kD>” - 1 
- - a(4 n(k,/k,)“-‘(UC - 1) - m(k,lk,)“-‘(ab - 1) 

The variance of the intrinsic isotope effect is determined by 

Variance (kH/kD) = Variance (ub) W&,) 2 - + Variance (UC) - [ 1 a(ac) . 
[101 

Finally, the standard errors of a calculated intrinsic isotope effect is obtained by 
taking the square route of the variance of k,lk,. 

The practical significance of Eqs. [8]-[ lo] is illustrated in Fig. 1, which shows 
that the propagation of error expands when (V/K),I(V/K), approaches values of 
one, and is smallest when (V/K),I(V/K), approaches k,lk,. Experimental designs 
with protium as the reference propagate the largest relative error and deuterium 
the least. A tritium-referenced design falls in between, with asymptotic approaches 
to the protium curve at low isotope effects and to the deuterium curve at high 
effects. 

The minimal error found near intrinsic values, shown on the right of Fig. 1, was 
not anticipated as it runs contrary to what is generally believed (8). The conflict 
arises from misinterpreting the conclusions of Albery and Knowles (4), who asked 
a similar question but answered it differently than is done here. They questioned 



INTRINSIC ISOTOPE EFFECTS 437 

1 2 3 4 5 

Experimental W/K) h/ (V/K) d 

FIG. 1. Propagation of experimental error into calculated intrinsic isotope effects. The curves were 
simulated by assuming ?3% experimental error in values of measured isotope effects on V/K, originat- 
ing from an intrinsic deuterium isotope effect of 5. Only the positive or upper half of the error envelop 
is portrayed. 

what would happen to experimental errors when subjected to an exponential 
calculation, and whether this might preclude obtaining useful information. They 
answered in terms of a contour diagram of the breakdown of the Swain-Schaad 
relationship, leaving useful information undefined. The breakdown portrayed in 
the contour diagram referred to percentage changes in the exponent of Eq.[2] as 
a function of deuterium isotope effects, which is governed by a partial differential 
equation very different from Eq. [8]. 

In practice, the precise magnitude of the intrinsic isotope effect is more useful 
than the operative exponent. For example, intrinsic isotope effects of enzyme- 
catalyzed reactions are necessary in order to deduce transition state structures 
(9). An important exception, however, is in the detection of hydrogen tunneling, 
which has a long history in chemical reactions (10) and has recently been extended 
to enzymatic reactions (II). The traditional approach used exponentiation, and 
involves a comparison of deuterium and tritium isotope effects, 

(k,lk,)1.442 = (kHlkT)ca,c > (k,/k,),,,. [Ill 
Alternatively, Saunders (12) has proposed that the tritium-referenced Swain- 
Schaad relationship, 

was more sensitive to tunneling than the form in Eq. [ll]. If tunneling occurs, then 
substituting an observed value for kHlk, in Eq. [ 111 leads to a calculated value for 
k,lkT that is larger than the observed tritium isotope effect. Similarly, substitution 
of an observed value for kDlkT in Eq. [ 121 leads to a calculated value for k,lk, that 
is smaller than the observed tritium isotope effect. Sometimes new exponents 
which will bring the values of (kHlkT)cdc and (kHlkT)obs into agreement are calculated 
and reported, which is the type of numerical analysis addressed by the equations 
of Albery and Knowles (4). 
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FIG. 2. Detection of hydrogen tunneling by intrinsic equations and by exponential. Observed tritium 
isotope effects of Cha et al. (II) are shown as open circles, exponentiating by 3.26 are solid circles, 
exponentiating by 1.44 are solid triangles, and intrinsic isotope effects are solid squares. Intrinsic 
tritium isotope effects and error bars were calculated from an equation similar to Eq. [6], with 
appropriate exponential substitutions in Eqs. [8] and [9], formulated to express tritium rather than 
deuterium isotope effects. 

The relative sensitivities of Eqs. [ll] and [I21 are illustrated in Fig. 2, using 
primary isotope effect data from Table 2 of Cha et al. (12). Comparisons between 
observed values of the tritium isotope effect on V/K for benzyl alcohol (average, 
7.15) and exponentiated values calculated from (V/K),I(V/K), according to Eq. 
[ 121 (average, 5.95) were used to detect hydrogen tunneling in the oxidation reac- 
tion catalyzed by yeast alcohol dehydrogenase. Also illustrated are values calcu- 
lated from (VIK),I(VIK),, which in turn were derived from the data using a 
comparable level of experimental error, in order to contrast exponentiation accord- 
ing to Eq. [l I] (average, 7.78). As projected by Saunders, the comparison based 
on Eq. [12] does generate a larger difference than does Eq. [ll]. However, much 
of the advantage is lost by its greater propagation of error, represented by the 
horizontal error bars. 

As a new proposal, the use of the intrinsic equations as a means to detect 
tunneling is also illustrated in Fig. 2. The isotope effects of Cha et at. (II) were 
entered into Eq. [6] to yield values for the intrinsic deuterium isotope effect. These 
values were converted to intrinsic tritium isotope effects and found to be much 
lower than observed (average, 5.14), but without a proportionate increase in the 
propagation of error. While all three approaches similarly generate significant 
differences between observed and calculated isotope effects sufficient to support 
a contribution from hydrogen tunneling to the reaction rate, the three calculations 
differ in precision. The signal-to-noise ratios in Fig. 2 are 1.4, 1.8, and 2.7 for 
Eqs. [ll], [12], and [61, respectively. Hence, intrinsic equations have a statistical 
advantage over exponentiation as a means of detecting tunneling, or other origins 
of breakdown of the Swain-Schaad relationship, such as low magnetic fields (13). 
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