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Often the Michaelis constant of an enzyme will be de- 
termined several times. This may be done for various 
reasons such as ensuring reproducibility, comparing 
different enzyme preparations, or examining the ef- 
fects of variations in experimental conditions. In these 
circumstances, two questions arise. First, how can the 
various estimates of the Michaelis constant be com- 
pared to determine whether they are the same within 
the limits of experimental variation? Secondly, if they 
are all the same, how can the values be combined to give 
an overall estimate? These questions are addressed 
here and a solution proposed in which the sets of data 
are pooled and analyzed with a separate maximum ve- 
locity for each set but a common Michaelis constant. 
The pooled data are partitioned in suitable ways and 
reanalyzed to examine, by means of a variance ratio 
test, whether a single Michaelis constant gives a satis- 
factory fit to the data. o 1990 Academic press, IIIC. 

One of the fundamentals of science is that experi- 
ments be repeated and the results repeatable. In most 
cases, due to uncontrolled variations in technique and 
materials, identical results will not be obtained. A deci- 
sion then must be made as to whether the observed vari- 
ation is within acceptable limits. 

A second and related problem concerning the results 
of several similar experiments is if, and how, the results 
can be combined. That is, when several experiments 
yield independent estimates of a particular quantity 
which may differ somewhat both in value and precision, 
how can we combine these estimates to give a single, 
overall value incorporating all the available informa- 
tion? 

In some instances, such as when the quantity being 
determined is a mean, methods for comparing and com- 
bining estimates are extensively documented in stan- 
dard statistical texts. However, there are other in- 
stances about which these texts offer no guidance. 
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A good example is where the Michaelis constant (K,,,) 
of an enzyme has been determined several times, per- 
haps with different enzyme preparations and different 
numbers or combinations of substrate concentrations. 
We might expect that the maximum velocity (V,) would 
vary from one experiment to another, while the K,,, 
should remain constant. How do we decide whether the 
K, is the same from all experiments, and how do we 
combine the several values of K, to obtain a single value 
encompassing the entire set of data? 

In a previous publication (l), several estimates of the 
K,,, of human erythrocyte transketolase for thiamin di- 
phosphate were combined, but no details of the method 
employed were given. Here I will provide these details 
and illustrate the method by example. Although the ex- 
ample is concerned specifically with Michaelis con- 
stants, the approach can be applied to a variety of other 
situations. 

EXPERIMENTAL 

The experimental observations consist of nine inde- 
pendent determinations of the V, and I(, of Escherichia 
coli prephenate dehydratase. Each experiment con- 
sisted of between 5 and 14 rate measurements at con- 
centrations of the substrate (prephenate) ranging be- 
tween 0.1 and 5 mM although this full range was not 
used in any single experiment. These data were gath- 
ered during the course of another study which is re- 
ported elsewhere (2). Rates are expressed as AA,, per 
minute. 

DATA ANALYSIS 

Individual experiments were analyzed by nonlinear 
regression, fitting the Michaelis-Menten equation (Eq. 
[l]) to the data: 

u = VJ(1 + KJA]). 111 

Fitting was done using the DNRP53 computer pro- 
gram (3) and data were weighted on the basis that the 
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error in rate determinations is proportional to the value. 
This analysis gave values and standard errors for both 
V,,, and K, together with a residual sum of squares 
(RSS). This latter value represents the weighted square 
of the difference between the fitted (J/) and experimen- 
tal rate, summed over all data points (Eq. [2]): 

RSS = C wi(tii - Q2. PI 

To combine several experiments, it is necessary to fit an 
equation having different maximum velocities for each 
of them but a common K,,,. This was achieved by using 
Es- [31, 

v, = v,, ]31 

where k is an integer “indicator variable” which denotes 
the data set; i.e., k = 1 for the first set, k = 2 for the 
second set, and so on (see Appendix). A similar tech- 
nique has been described by Bates and Watts (4) who 
have also recommended the variance ratio test (see be- 
low) for this type of analysis. 

Different data analyses were compared using a vari- 
ance ratio (F) test (Eq. [4]): 

F = ((RSS, - RSS,)&, - ~,))I(RSS,/U,). 141 

This test has been outlined elsewhere (5) but it will be 
explained briefly at this point. If data are fitted using a 
“complete” equation and a “reduced” equation, from 
which some parameters have been omitted, it is possible 
to make a statistical judgement as to whether the re- 
duced equation adequately describes the data. The 
meanings of the complete and reduced equation in the 
present context will be detailed in Results. 

RSS, and RSS, are the residual sums of squares for 
the reduced and a complete equation, respectively, 
while v, and v, are the corresponding numbers of degrees 
of freedom. The complete equation is taken to be a per- 
fect fit so that RSSJv, represents the variance due to 
experimental error only. However, RSS, will contain a 
“lack of fit” component which can be estimated by sub- 
tracting RSS,, and the variance due to lack of fit then 
calculated. The ratio of these variances (lack of fit, rela- 
tive to experimental error) is then tested for statistical 
significance. 

From the results of such an analysis it is possible to 
decide whether the K,,, values found in different experi- 
ments can be regarded as the same. 

The DNRP53 computer program and its use in fitting 
Eqs. [l] and [3] to experimental data is described briefly 
in the Appendix. More detailed information and the pro- 
gram itself can be obtained from the author. 

RESULTS AND DISCUSSION 

Initially the method will be illustrated using three ex- 
periments (data sets 3,4, and 6) selected from the nine 

TABLE 1 

Analysis of Prephenate Dehydratase Substrate 
Saturation Data 

Data set IO’ x v, K,, (CM) N lb x RSS Y 

Separate analysis 
3 238 k 13 557 k 60 10 3.8710 8 
4 134 f 10 617 k 88 5 1.3410 3 

6 622 + 25 479 + 41 14 3.8392 12 
RSS, = 9.0512 vc = 23 

10’ x RSS, “r 

Combined analysis 
3 232 f 8 
4 124 f 5 
6 652 f 21 I 

531 * 33 29 10.1278 25 

Variance ratio 
Calculated: F = { (10.1278 - 9.0512) /(25 - 23) ) / { 9.0512123) 

= 1.37 

From tables: I&3 = 1.73 (80%) 

Note. For the section labeled separate analysis, the V,,, and K, were 
determined by fitting Eq. [l] to each of three sets of data, while for the 
section labeled combined analysis, the data were pooled and analyzed 
by fitting Eqs. [I] and [3] to yield a V,,, for each of set of data, but a 
common Km. The value of RSS, was obtained directly from this com- 
bined analysis while RSS, was calculated by summing the individual 
sums of squares from the separate analyses. The variance ratio (F) 
was calculated using Eq. [4]. 

which were available. Equation [l] was fitted to each set 
separately, to yield V,,, and K,,, values shown in the up- 
per section of Table 1. The V,,, differs considerably from 
one experiment to another, reflecting the different 
amounts of enzyme which were used. However, the K,,, 
appears to be fairly constant and the theoretical lines 
drawn according to these fitted parameters (Fig. 1A) 
confirm this view, in that all intersect the abscissa at 
similar positions. 

I/ [substrate1 1/ hbstratel 

FIG. 1. Double reciprocal plot of substrate saturation data for pre- 
phenate dehydratase. Three experiments were selected, there are 
data sets 3 (filled circles), (open circles) and 6 (open squares). The 
lines are calculated from the fitted parameters given in Table 1 from 
the separate analysis (A) and the combined analysis (B). 
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Analysis of the combined data using Eqs. [l] and [ 31 TABLE 2 

gave the results shown in the middle section of Table 1. Detection of Aberrant Michaelis Constants 
Each set is described by its own V,,, but a common K,,, for Prephenate Dehydratase 
describes all three sets. As illustrated in Fig. lB, this 
overall fit is a satisfactory description of the combined Set omitted Set alone 

data. As expected, the common K,,, is within the range of 
values found in the separate analysis. Moreover, it has a 

ye: K 
m 

(pM) 
RSS K,, (PM) RSS RSS, F 

smaller standard error since it is obtained from more 1 557 t 19 0.17755 790 -c 40 0.00104 0.17859 6.325 
information than anv of the senarate determinations. 2 556 + 20 0.18010 694 + 48 0.00383 0.18393 4.283 

Table 1 also illustrates the use of the variance ratio 
test as a means for examining whether a common K,,, 
gives a satisfactory fit to the data. The separate analy- 
ses each give a residual sum of squares, and these may 
be added together, giving the RSS, value of 9.0512. In 
effect, the entire set of 29 points is being fitted using Eq. 
[l] except that there is a separate V,,, and K,,, for each 
set; thus there are six parameters extracted from the 
data, which leaves 23 degrees of freedom (v,). From the 
combined analysis, RSS, is calculated and this has 25 
degrees of freedom (v,) because there are only four fitted 
parameters. From these RSS and v values, the variance 
ratio can be calculated from Eq. [4], as shown in the 
lowest section of Table 1. 

These calculations yielded an F value of 1.37, which is 
lower than the corresponding value at the 80% level 
from tables of 1.73. In other words, there is a better than 
20% probability that the increase in sum of squares be- 
tween the complete and the reduced equation has arisen 
by chance and it is reasonable to conclude that a com- 
mon K,,, describes all of the data. 

In the data analysis shown in Table 1, comparison 
was made between two alternative ways of grouping the 
three data sets. These groupings were with the three 
sets combined, and with each of them separate. Other 
groupings involving pairs of data sets could have been 
used and there are circumstances in which this would be 
sensible. For example, if we had an experiment in the 
presence of a potential inhibitor and two controls in its 
absence, then the most informative comparison might 
be between the combined data and the grouping in 
which the data from the two control experiments are 
pooled. 

With multiple sets of data, the combinations are al- 
most limitless, but the comparisons undertaken would 
be dictated by circumstances. Consider the present situ- 
ation (Table 2) in which there are nine sets of data. 
Since all nine experiments were performed under simi- 
lar experimental conditions there is no reason to expect 
them to give different results but, as can be seen when 
each set was analyzed alone, the Km varied between 479 
and 790 PM. To test whether all sets were consistent 
with a single Km, a comparison was made between an 
analysis with all nine sets combined (i.e., a single Km and 
nine separate V,.,, values) and one in which one data set 
was segregated from the rest (i.e., a single K,,, for eight 
sets plus a separate K,,, for the segregated set, and again 

3 572 + 21 0.15729 557 k 60 0.03871 0.19600 0.078 
4 565 + 20 0.18133 617 + 88 0.01341 0.19474 0.493 
5 573 + 21 0.18628 523 + 46 0.00847 0.19475 0.490 
6 592 + 21 0.13991 479 +- 41 0.03839 0.17830 6.439 
7 572 t 21 0.19443 513 f 22 0.00049 0.19492 0.433 
8 563 f 20 0.18527 654 + 52 0.00659 0.19186 1.461 
9 576 + 22 0.16094 534 f 42 0.03315 0.19409 0.709 

Note. Nine sets of data were pooled and analyzed by fitting Eqs. [l] 
and [3], which gave values for the nine maximum velocities (not 
shown), a Km of 569 + 19 pM and RSS, of 0.19624 (v, = 65). The data 
were then reanalyzed by omitting set 1 to give the Km and RSS values 
of 557 + 19 pM and 0.17755, respectively, as shown in the second and 
third columns of the first row. Set 1 was analyzed alone to give the K,,, 
and RSS values of 790 + 40 @M and 0.00104, respectively, as shown in 
the fourth and fifth columns of the first row. Summing the values of 
RSS gave RSS, = 0.17859 as shown in the sixth column, with V, = 64. 
Finally, F was calculated from Eq. [4], which gave a value of 6.325 
(seventh column). This process was repeated with each data set omit- 
ted in turn. 

nine separate V,,, values). This comparison was re- 
peated with each of the nine sets being segregated in 
turn. In most cases the calculated F value was below the 
80% level from tables (with 1 and 64 degrees of freedom) 
of 1.68. Three of the values (sets 1, 2, and 6) fall in the 
95-99% range (F values between 3.99 and 7.05), mean- 
ing that there is a l-5% probability that the decrease in 
the sum of squares resulting from the extra freedom of 
including an additional parameter has arisen by chance. 
As discussed elsewhere (6), it is this author’s experience 
that probabilities of less than 1% are required to reject 
the null hypothesis; i.e., to be sure that the K,.,, is truly 
different. Nevertheless, to find three sets falling in the 
l-5% range must raise some suspicions. 

The enzyme used in these experiment, E. coli pre- 
phenate dehydratase, is involved in phenylalanine bio- 
synthesis and is subject to inhibition by phenylalanine 
(7). This inhibition changes the substrate saturation 
curve from an apparently hyperbolic shape to one which 
is clearly sigmoidal. While the present experiments 
were done in the absence of phenylalanine, it is possible 
that a trace of sigmoidicity is present. In these circum- 
stances, fitting the Michaelis-Menten equation to the 
data would be an approximation; moreover, the value 
obtained for the K,,, might be expected to depend on the 
range of substrate concentrations used in the experi- 
ment. It would be anticipated that experiments per- 
formed at lower substrate concentrations would tend to 
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give high K,,, values and vice versa. Thus it is of interest 
that the two experiments (sets 1 and 2) which gave the 
highest K,,, values were the only two in which substrate 
concentrations as low as 0.1 mM were used, while the 
highest substrate concentration used was 5 mM in ex- 
periment 6, which gave the lowest K,,,. Thus, while no 
curvature is visually discernible in a double-reciprocal 
plot (Fig. l), it appears that the substrate saturation 
curve for this enzyme has some sigmoidicity. This was 
confirmed by fitting the Hill equation (8) to data set 6 
and to the combined nine data sets, which gave Hill 
coefficients of 1.303 + 0.146 and 1.153 + 0.036, respec- 
tively. 

Setting aside the sigmoidicity, there may appear to be 
an inconsistency between Tables 1 and 2 in that data set 
6 is judged to have the same K,,, as sets 3 and 4 from 
Table 1, while the results in Table 2 raise some doubts 
about this equality. The reason for these apparently 
conflicting conclusions is the different amounts of in- 
formation on which they are based. Table 2 includes six 
more data sets than Table 1, and it turns out that all the 
extra sets give a Km higher than data set 6. Thus, it is 
quite reasonable that the aberration in data set 6 can be 
seen more clearly in the light of this extra information. 

The example discussed here concerns a common 
problem in enzyme kinetics but the solution proposed 
can be applied much more widely. Any time a mathemat- 
ical model is fitted to experimental data a series of pa- 
rameters will be obtained, some of which will be ex- 
pected to vary from one experiment to another while the 
remainder stay constant. The results can be compared 
and analyzed by the pooling method and F test outlined 
in this report. For example, a first-order decay process 
with different amounts of starting material should yield 
an unchanging rate constant. A suitable analysis for this 
situation is readily adapted from that described here. 

APPENDIX 

The DNRP53 computer program is a general nonlin- 
ear regression routine which can be used to fit a wide 
variety of equations to experimental data. The program, 
which is written in BASIC, requires that the equation to 

be fitted be inserted at a particular place and uses a 
prescribed syntax in which the dependent variable is 
referred to by the symbol G while the independent vari- 
ables are represented by X(l), X(2) and so on. The fitted 
parameters are referred to as B(l), B(2), B(3) and so on. 

To fit Eq. [l] to a set of substrate saturation data for 
an enzyme-catalyzed reaction, V, is represented by 
B(l), K,,, by B(2), and the substrate concentration by 
X(1). Thus, the following lines is inserted into the pro- 
gram: 

5100 G = B(l)*X(l)/(B(2) + X(1)). 

In the case where several subsets of data are pooled and 
fitted with a common K,,, but a different V,.,, for each 
subset, a second independent variable (X(2)) is used as 
an indicator variable to select the particular V, to be 
applied to that subset of data. The lines to be inserted 
into the program are shown below; it should be noted 
that M is a predefined variable in the program which is 
equal to the number of parameters: 

5100 VM = B(X(2)) 

5110 G = VM*X(l)/(B(M) + X(1)). 

The DNRP53 program, together with a user’s manual, 
can be obtained on a disk suitable for an IBM-compati- 
ble computer from the author for a small fee. 
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