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The rate equation for a tight-binding inhibitor of an enzyme-catalysed first-order reversible reaction was
used to derive two integrated equations. One of them covers the situations in which competitive,
uncompetitive or non-competitive inhibition occurs and the other refers to the special non-competitive case
where the two inhibition constants are equal. For these equations, graphical and non-linear regression
methods are proposed for distinguishing between types of inhibition and for calculating inhibition constants
from progress-curve data. The application of the non-linear regression to the analysis of simulated progress
curves in the presence of a tight-binding inhibitor is also presented. The results obtained are valid for any
type of 'dead-end '-complex-forming inhibitor and can be used to characterize an unknown inhibitor on the
basis of progress curves.

INTRODUCTION

The analysis of progress-curve data has many well-
known advantages over initial-velocity measurements:
more information from fewer experiments, more reliable
data, the possibility of simultaneous analysis of product
effect and so on. Although it has not been used very
often, this is probably a temporary problem (Duggleby,
1985), which will be overcome as methods for data
analysis are improved and simplified (Duggleby & Wood,
1989).
There have been several attempts to use progress

curves for the determination of inhibition parameters.
Thus Waley (1982) reported a method to determine
inhibition constants by the comparison ofprogress curves
recorded in the presence and in the absence of an
inhibitor. This treatment assumes the validity of rate
equations for classical inhibitors, as does the work of
Kellershohn & Laurent (1985). This latter paper analyses
the influence of product inhibition on progress curves
at high concentrations of enzyme. For low enzyme
concentrations the product influence is described by the
integrated equations deduced by Boeker (1984) for re-
versible mono- and bi-molecular reactions.
Though there is not a clear demarcation between the

classical type of inhibition and that caused by tight-
binding inhibitors, classical inhibition is produced only
at inhibitor concentrations considerably higher than the
enzyme concentration, whereas tight-binding inhibition
occurs at inhibitor concentrations comparable with that
of the enzyme (Morrison, 1969). Although a limited
number of studies have been made on the kinetics of
tight-binding inhibitors, interest in the subject is in-
creasing constantly, mainly because of their importance
as chemotherapeutic agents (Williams & Morrison, 1979;
Williams et al., 1979).
The kinetic analysis of tight-binding inhibition is

complex because Michaelis-Menten-type equations are
not valid. As a result, double-reciprocal plots become

non-linear in the presence of tight-binding inhibitors, as
demonstrated by Morrison (1969). He gave a general
initial steady-state rate equation for any enzyme-
catalysed reaction in the presence of a tight-binding
reversible inhibitor, but he has underlined the difficulties
related to the determination of inhibition constants.
A linear form of the Morrison equation was derived by

Henderson (1972). It allows a graphical determination of
the mechanism of inhibition and the enzyme concen-
tration. It was also shown and illustrated for the
Michaelis-Menten-type irreversible reaction that sec-
ondary plots give the inhibition constants for competitive
and uncompetitive cases. However, for non-competitive
inhibition the two inhibition constants can be evaluated
only by extrapolating a non-linear curve, a procedure
that is unlikely to yield accurate values. The experimental
part of this work (Henderson, 1972) confirms that, at
least in the case of the mitochondrial ATPase inhibition
by rutamycin, the scatter of the data points is too large
to allow accurate evaluation of the equation parameters.

It should be noted here that in this paper we use the
term 'non-competitive' in the broad sense where in-
hibition depends on two inhibition constants (Duggleby,
1988). In the special case where the two constants are
coincident, which, for want of a better term, we here call
'pure non-competitive' inhibition, Henderson's equation
yields a straight line that can be used to calculate the
inhibition constant.
Greco & Hakala (1979), by using a Monte Carlo

simulation, evaluated the strong and weak points for 11
of the existing initial-rate methods used in calculating
dissociation constants. They concluded that computer
methods that utilized non-linear regression based on the
equations of Ackermann & Potter (1949) and Morrison
(1969) are significantly more precise.
More recently, Sculley & Morrison (1986) developed a

new method for the determination of kinetic constants
governing slow tight-binding inhibition, by analysing
progress curve data. However, this method, as well as
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other methods for analysing slow-binding inhibition
(Williams & Morrison, 1979; Williams et al., 1979, 1980),
consider only the initial part of product-time curves
where there is a transition from the initial velocity to the
steady-state velocity, and they do not allow for depletion
of the substrates or inhibition by accumulated product as
the reaction proceeds.
The aim of the present paper is to try to overcome

the difficulties in the determination of the inhibition
constants by using the advantages of progress-curve
analysis. Starting from Morrison's general equation
and from a widely used form of the reversible-type
Michaelis-Menten equation, we derived a general
form of the progress-curve equation for competitive,
uncompetitive and non-competitive inhibition. Thus
these equations, which have not been reported previously,
cover the main types of tight-binding inhibition.
Our principal aim is to show the origin and inter-

pretation of these equations, rather than to fit them to
progress-curve data. However, some selected examples
are given to illustrate possible approaches to non-linear-
regression analysis of experimental measurements.

THEORY

The initial-velocity equation for any enzyme-catalysed
reaction may be represented in a general form (Morrison,
1969) as:

D (1)

The rate equation for this mechanism is:

V = f[S]/Ks-Vr[P]/KP
I + [S]/K, + [P]IKP (5)

where the maximum velocities in the forward and reverse
direction (k and VJ) and the Michaelis constants for S
and P (K. and K,) are given by:

f = k+2[E]t

V, = k-,[E]t

K,k 1+k+2Ks= k
k+1

Kp k_ + k+2
P=k-2

(6)

Note that [S] and [P] are related by stoichiometry
embodied in the conservation equation:

[S]O+ [P]O = [S]+ [P] = [Se+ [P]e
where the subscript 'o' means initial and subscript 'e'
equilibrium value.
The progress-curve equation generally is expressed as

a function ofz = [P] - [P]O, that is z represents the amount
of product formed during the enzyme-catalysed reaction.
It is usual to replace [S] and [P] with functions of z in the
kinetic equations, but in the following we find it more
useful to express these equations in terms of a new
variable ~, defined as:

= zoo0-Z = [PIe-[PI = [S] ISLe
where N contains the rate constants and substrate
concentrations that determine the maximum velocity of
the reaction, D is a sum of several terms related to the
distribution of the enzyme in all its complexed forms
(Cleland, 1963; Morrison, 1969) and [E], represents the
total enzyme concentration. Morrison (1969) also gives
the general rate equation (2) when there are multiple
'dead-end' enzyme-inhibitor complexes (Ei I) having
dissociation constants of K1:

=- MN[E]t
1D+ [I]f (Ni/Ki)

(2)

Here Ni is part ofD representing the distribution of that
form of enzyme which combines with the inhibitor to
form E, I, and [I]f represents the concentration of the free
inhibitor. The distinctive feature of tight-binding
inhibitors is that [I]f is not equal to the total inhibitor
concentration [I],; in this case vi is the solution of
Morrison's equation (Morrison, 1969):

v 2 + N( N/)+[1 [l)v~-_ N _E = 0 (3)
vi IE(Ni/K)+ D ) i DY(N1/K1)

Consider a reversible one-substrate-one-product
enzyme-catalysed reaction (S=I P) in the presence of a
non-competitive inhibitor. We have to derive the par-
ticular form for N, D and I(Ni/Ki).
For the sake of simplicity we begin by considering the

scheme containing only one enzyme complex:
k+l k+2

E+S ES E+P
k_1 k_2

(4)

(7)
where zo, is the value of z at equilibrium, i.e.:

zo = [P1e-[P]o = (VfKp[S]o-Vr Ks[P]O)/(V Kp+ Vr Ks).
We now rewrite the rate equation for the uninhibited
reaction (eqn. 1) in the form v = pl/( +&), i.e.:

N= PC
[E]t

D = C+8J
Now consider the equilibria involving the inhibitor:

KI
E+ I El

KI'
ES + I ESI

(8)

(9)

where KI and KI' are dissociation constants for El and
ESI complexes respectively.
The distribution equations (Cleland, 1963; Morrison,

1969) for the free enzyme and for the ES complex are:

[E] AE
[E]t A

[ES] AES
[E]t A

where

AE = k-1+k+2
AES = k+l[S]+k-2P]
A = AE +AES

I
I

(10)

(1 1)
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In the absence of the inhibitor, the steady-state velocity
equation is:

v = k+2[ES]-k 2[P] [E] = k+2A
+
k-2P]AE [E]

(12)
Allowing for the possibility that the inhibitor reacts with
both E and ES, then, using eqn. (2), we obtain:

Vi k+2 AES -k_2[P] -E
= AE + AES + [Ilf[(AE/KI) + (AES/KI')]

which may be rewritten as:

vi
~PC

= C+ 6+ [I]f I(N,/K,)
with

Vr Ks+ Vf Kp
Kp-Ks

_Ks___ (ISb + [Pb) ( J + )
Kp Ks Vf Kp + ~Vr ))

(13)

(14)

Table 1. Expressions for a and b

Type of
inhibition a b

Non-competitive K,K(±+([S]+[P]O)(+J0 1 1
Kp K Kp+ V, K KI' KI

Competitive K, Kp 1 O
KP-K, K

Pure KKp + ([S]O+[P]O) (VJ + __

non-competitive Kp-K. VfKp+VK ) K' K'

Uncompetitive K Kp ([S]0 + [P]b) (1V + ) 1 1
K-K VKp+VkK. K,' K,'

(15) We emphasize that p2, p3 and p4 are all strictly positive.
Examine now the roots of the quadratic equation:

(16) P20+2P3C+p4 = ° (21)

KsK1 I ([Sb +[PK0)( + V \)II (N /K,) = + +
Kp sK fK rK K1" K'

Provided that K. < Kp then p > O and a > O. It is of
interest that K. = Kp implies that the progress curve
follows a simple exponential because v depends linearly
on (, i.e. v = vP with v = (V,+ Vr)/(K,+[S]b+[P],). This

case can be treated by the same procedure putting
N = (v/[E]t), D = 1 and then deriving the proper form
for X(N1/K1). We consider that this situation would
be so rare that it does not warrant further analysis in a
separate section.

It is evident that X(Nl/Ki) has the form:

(NilKi) = a+bC (18)

The particular forms of a and b for competitive, pure
non-competitive and uncompetitive inhibition can be
derived by setting K,' = oo, K, = K,' and K, = oo re-
spectively (see Table 1).

Setting K, = oo and [P]O = 0, a and b from Table 1

The roots can be obtained from the general solution:
S1=(-p3 +VD)/P2I,)^
52= (-p3-VD)/P2 J

where D = p32 -P2P4 = 4[I]t [E]t(a - b8)2

(22)

(23)
Clearly, two situations appear here:

(i) *a/b implying s1 and s2 are real and distinct;
(ii) = a/b when the real roots s, and s2 are identical.
From Table 1 we can see that the first situation

corresponds to competitive, uncompetitive and non-

competitive inhibition and the second one to pure non-

competitive inhibition. The integration of eqn. (19),
presented in detail in the Appendix, gives, in the case of
competitive, uncompetitive and non-competitive inhi-
bition, the following equation:

t= I-[A ln( -xi)+ -1 )(x- +(; ) (x xo)]

then become identical with the expressions given by
Henderson (1972) for the case of irreversibility.

Introducing now eqns. (8) and (18) into eqn. (3) and
solving it for vi = -dC/dt, we obtain:

dt (P2 +2P3 +P4)+P5C+P6
-dC =P

In eqn. (19) the following notations were used:

P1= 1/(2p)
P2 = [1 + b([I]t- [E] )]2 + 4b[E]t
p3 = ab([I]t- [E] )2 + (a + b6) ([I]t + [E]1) + 6

p4 = [8+ a([Ilt- [E])]f + 4a8[E]t
p5 = 1 + b([I]t- [E]1)

P6 = 8+ a([I]t- [E]l)

(24)

where

x =

xo = Z 52(19)

I1

x1=

x =-I.2

X3 = S(s2/S1)

X4 = - 5(s2/S1)

(20)

(25)

and A1 to A45 B1 and B2are defined in the Appendix.
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For pure non-competitive inhibition a simpler equation
results:

(26)

with

proportional to the product concentration, followed by
rounding the resultant value to four significant digits.

Non-competitive tight-binding inhibition simulated
by using the following parameters and conditions:

P* = 2[E]- (v\I(K' + [I]t-[E]2 + 4[E]t KI'}-(KI + [I]t- [E]t))

While eqn. (26) characterizes the progress curves for
tight-binding pure non-competitive inhibition where KI
is exactly equal to KI', there are also several other
situations when formally similar types ofequations result.
Thus, for [I], = 0, by using successively eqns. (23) and
(20) and finally integrating eqn. (19), we obtain eqn. (28),
which is the integrated form of the uninhibited reversible
reaction:

t = (1/p) [z-a ln (1 -z/zOz]) (28)
The same equation (28) results when KI and KI' tend to
xc, that is for the absence of any inhibitory effects on the
enzyme.
A similar type of equation is derived in the case of a

classical inhibitor. Indeed, taking into account eqn. (8)
and eqn. (18) and setting [1]f = [I]t, eqn. (2) integrates to:

t = (1/papp ) [z-8aPP * n (1 -z/z°z)] (29)
where

app.=.. P

1+ b[I]t

8app. 1 + a[I],
I + b[I]t I

Consider now the significance of p* from eqn. (26)
for a tight-binding pure non-competitive inhibitor.
Eqn. (All) from the Appendix gives the initial rate
for this type of inhibition and shows that p* is the
maximum velocity for a given inhibitor concentration,
that is p* = v,(C-+ ox). In other words, accounting for
(t = 0) = z-= ([S]O-[P]0/K8)/(1 + 1/KJ), p* represents
the initial velocity of the reaction at saturating values of
substrate concentration in the presence of the inhibitor.
Thus we can derive from eqn. (27):

l _ (PT/p =[E]t + KI P* (31)1 (P*/P) = i

It is worth mentioning that the above equation can be
equally well derived from the equation given by
Henderson (1972) (a linearized form of eqn. 3), by
substituting appropriately I(NI/K1) and setting [S] -* oso.

(27)

K = 100 mM/h, V = 50 mM/h, KS = 1 mM, KP = 4.5 mM,
KI = 10 nm and KI' = 40 nM. [S]O, [P]O and [E], were fixed
at 5 mM, 0 mm and 20 nm respectively, and three pro-
gress curves were simulated at inhibitor concentrations
of 10, 30 and 50 nm. From each curve eight points
were taken corresponding to expected product concen-
trations of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mm, i.e.
they are equally spaced between zero and the equilibrium
concentration of 4.5 mM.
The competitive inhibition of bovine chymotrypsin A

by aprotinin was simulated at 25 °C and pH 7.8 in
Tris/HCl buffer containing 300 (v/v) methanol. Under
these conditions, with benzoyl-L-tyrosine ethyl ester as
substrate, the enzyme has the following characteristics:
Ks = 2.6 mM, V = 51.6 ,M/min at [E], = 20 nM, V = 0,
KP > Ks and KI = 10 nm (Folk & Schirmer, 1965;
Lazdunski et al., 1974). Progress curves were simulated
with 20 error at [S]O = 100 /,M and 200 /tM at [I], values
of 10, 30 and 50 nM. In addition, four curves without
inhibitor were calculated at [S]0 values of 1, 2, 3 and
4 mM. From each curve, nine points were collected,
equally spaced from 10 to 9000 substrate utilization.

Analysis of data
Eqn. (24) was fitted to the simulated experimental data

for non-competitive inhibition by non-linear regression
by using the BASIC program DNRP53 (Duggleby, 1984).
K, K,' and [E]t were considered as unknown parameters.
Eqn. (24) expresses the time (t) as function of product
concentration ([P]) (i.e. the independent variable versus
the dependent one), but the correct way of regression
analysis requires the expression of [P] as a function of t
in order to minimize the sum of squares (SSQ) on the [P]
axis. This was achieved by solving eqn. (24) by using a
bracketing method (Duggleby & Ward, 1988), knowing
that [P] must be between [P]0 and [P]e. The program gives
the best-fit values and standard errors of the unknown
parameters.
A similar procedure may be used to calculate the

inhibition constant and the enzyme concentration for
competitive inhibition and for pure non-competitive
inhibition, except that in the latter case the fit is based on
a solution of eqn. (26).

METHODS
Simulation of experimental progress curves
By using particular values for the various enzyme

kinetic parameters, the initial concentrations of substrate
and product and the total concentrations of enzyme and
inhibitor, eqn. (24) or eqn. (26) may be used to calculate
the time required to accumulate any amount of product
which is less than z,. These times were taken as exact
values, and the effect ofexperimental error was mimicked
by adding to each product conceiitration a pseudo-
random number taken from a normally distributed
population with a mean of zero and a standard deviation

RESULTS AND DISCUSSION
The purpose in analysing the progress curves described

either by eqn. (24) or by eqn. (26) is to determine the
values of kinetic parameters. One of the major goals
would be to calculate the inhibition constants KI and/or
K1'. These parameters together with [E], are directly
related to the inhibition process, but eqns. (24) and (26)
also contain several parameters characterizing the basic
enzyme-catalysed reaction. We suggest that the calcu-
lation of parameters should be carried out in two main
steps. The first one would involve determining the kinetic
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parameters of the uninhibited reaction. In the second
stage those parameters that are related to the inhibition
would be determined.

Determination of kinetic parameters of the uninhibited
reaction
By integrating the eqn. (1) in which N and D from

eqn. (8) are substituted, we get eqn. (28), which is the well-
known form of the integrated Michaelis-Menten-type
equation (Duggleby, 1986). There are many reports
related to the calculation of parameters of this equation.
Although we would not recommend this approach, it
could be done by linear regression on different linearized
forms of eqn. (28). This method cannot be applied when
z., is unknown, so it is preferable to use non-linear
regression to obtain the unknown parameters (e.g. Atkins
& Nimmo, 1973; Fernley, 1974; Duggleby, 1984, 1986;
Szedlacsek & Ostafe, 1987).

In the case of pure non-competitive inhibition the
parameters p, 6 and z,, thus obtained are sufficient for the
subsequent use in the calculation of the inhibition
constant (see eqns. 26 and 27). However, in the case of
competitive, uncompetitive and non-competitive inhi-
bition, an additional parameter of the uninhibited re-
action is necessary in order to express a and b (see Table
1) in terms of these parameters. In fact, there are four
parameters of the uninhibited reaction: 4, Vr, Kr and KP).
These could be calculated as described by Duggleby &
Wood (1989), and used to calculate p, a and z. if
required. With this information at hand the inhibited
progress-curve equations would be expressed as functions
of parameters evaluated from the uninhibited reaction
together with [E]1 and the inhibition constant(s) KI and/or
KI'. We consider first the problem of establishing the
type of inhibition, then go on to look at the problem of
calculating inhibition constants. Their determination is
examined both for the general case and for the special
case of pure non-competitive inhibition.

Distinction between different types of inhibition
The first problem in characterizing a tight-binding

inhibitor is to ascertain the type of inhibition. We here
accept that p, 8, z. and V4 have been previously de-
termined by processing the progress-curve data obtained
for the uninhibited reaction. Thus the following pro-
cedure can be used.

For the inhibited reaction the progress curve is
monitored and the resulting set of data is analysed by
linear regression of t/z versus ln (1- z/z.)/z (see
eqn. 26). If this transformation of the progress-curve data
is well described by a straight line, this means that we
have to deal with a pure non-competitive tight-binding
inhibition or a classical type of inhibition. In order to
discriminate between them, we should make an additional
study: p8PP- and 8PP1 are calculated from the linear
regression mentioned above and the dependence of
1/p'PP and of 8,pp./paPP on [I]t is examined. The linearity
of both representation proves (see eqns. 29 and 30) the
existence of a classical-type inhibition. If these plots are
non-linear, the inhibitor is of the pure non-competitive
tight-binding type and KI' and [E]t can be calculated as
described below. It can be demonstrated that in the case
of this type of inhibition both I/paPP. and &PP./paPP. as
functions of [I]t are constantly increasing, the curves
being always concave-up.

If the plot of the transformed progress-curve data is

not linear, it means that the inhibited reaction obeys the
general eqn. (24). In this case, in order to decide which of
the three possible types of inhibition occurs, it is possible
to fit eqn. (24) to the set of data by non-linear regression.

If the absolute value of KI' is very high relative to both
KI and the largest [I]t, this suggests that we have a
competitive inhibitor. The set of data should be fitted
again to eqn. (24) but setting b = 0 and taking for a the
corresponding expression from Table 1. An example of
such a result was obtained by simulating the inhibition of
bovine chymotrypsin A by aprotinin. Fitting eqn. (24)
to the data gave KI = 9.86 + 0.26 nM and KI' = 210+
1061 /tM. Clearly the inhibition is dominated by the K1
component, and re-analysis as competitive inhibition
gave an equally good fit.

If the absolute value of KI is very high relative to both
KI' and the largest [I]t, this suggests that the inhibition is
uncompetitive. It is useful to refit the data to eqn. (24)
but using for a and b the appropriate forms taken from
Table 1. Finally, if KI and K1' are of comparable
magnitudes, the inhibitor is non-competitive and no re-
analysis is necessary.

Determination of inhibition constants for a competitive,
uncompetitive or non-competitive inhibitor
At first sight, eqn. (24) seems to be quite complicated

and the evaluation of parameters would be rather
difficult. However, taking into account that many of the
parameters can be determined from the uninhibited
reaction, the fitting of progress-curve data by a non-
linear-regression technique becomes feasible. Many
attempts have been made to apply non-linear regression
to progress-curve analysis (e.g. Atkins & Nimmo, 1973;
Fernley, 1974; Duggleby, 1984, 1986; Kellershohn &
Laurent, 1985). The majority of the authors have
concluded that these non-linear procedures are reliable
provided that some precautions have been taken [see,
e.g., Atkins & Nimmo (1973) and Matyska & Kovar
(1985)].

Despite of the complexity of eqn. (24), we have been
successful in applying non-linear regression to the ana-
lysis of simulated progress curves referring to non-com-
petitive tight-binding inhibitor. A typical example of the
fit is shown in Table 2. Note that KI and K,' are of

Table 2. Analysis of simulated progress curves for a non-
competitive tight-binding inhibitor

The progress curves with 1% error were simulated as
described in the Methods section. Eqn. (24) was then fitted
to these simulated data by fixing V, Vr, K. and KP equal to
their 'correct' values while treating K1, KI' and [E]t as
parameters to be estimated by regression.

Iteration K, (nM) KI' (nM) [E]t (nM) 103 x SSQ

Initial
1
2
3
4
5
Final
Standard
error

20.000
5.777
8.064
9.639
11.037
11.375
11.366
1.092

80.000
37.898
68.297
42.679
40.291
39.392
39.361
3.027

32.000
2.426
4.924
13.999
16.633
17.188
17.274
1.364

1190.603
1118.473

68.858
21.807
1.475
1.147
1.146
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comparable magnitudes -because the inhibitor is non-
competitive and no re-analysis as competitive or
uncompetitive inhibition would be needed.
The final fitted values given in Table 2 were found to

depend to some extent on the values chosen for the
parameters associated with the uninhibited reaction: V,
Vr, KS and KP. For example, when VJ and Kp were both
decreased from their correct values by 10% (thereby
maintaining an unchanged equilibrium constant for the
reaction), the final fitted values of K,, K,' and [E] were
altered by + 13.0%, -11.0% and + 8.5 % respectively.
We have also investigated the robustness of the

calculation procedure to poor initial estimates of the
parameters and found that fitting was successful over
the following ranges: K,, 4-60 nM; K', 9-150 nM; [E]l,
1-70 nm. Table 2 illustrates one such trial, in which the
initial estimates were each approximately double the
final values. Thus initial estimates do not need to be
particularly accurate, and simple guesswork will usually
provide suitable starting values for the regression.

In some instances a starting value for [E] could be
obtained by active-site titration, and estimates of K,, KI'
and [E] may be determined from initial-velocity
measurements as described by Henderson (1972). Ac-
cording to this method, when [E]l and [S]O are kept
constant, a plot of [I],/(1- vi/vo) against v0/v, is linear
with a slope of ([S]O + KS)/(Ks/KI + [S]0/KI') and an
intercept (at vo/v, = 0) equal to [E]. If the slope is
evaluated at two concentrations of [S]O and knowing K.,
K, and K,' can be determined by numerical solution of a
pair of simultaneous equations.
When eqn. (24) was fitted to error-free progress curves,

the original parameters were recovered almost exactly.
As the error level increases, the fitted parameters tend to
get further from their true values and the estimated
standard errors increase. To get a better idea of the effect
of experimental error, 40 sets of data were simulated at
1 % error. The overall mean of these 40 values of K, was
10.577 nM with a standard deviation of 1.502 nm. The
corresponding values for K,' and [E]l are 40.204 + 4.905
nM and 19.173+2.071 nm respectively. The 'correct'
values for KI, K,' and [E]t are 10 nM, 40 nm and 20 nM
respectively.

Determination of inhibition constant for a
pure non-competitive inhibitor
As mentioned above, eqn. (26) characterizes the pro-

gress curves for tight-binding pure non-competitive
inhibition, where K, is exactly equal to K,'. The theory
outlined above suggests a possible way to determine
graphically approximate values for K,' and [E]t. Thus:

(i) For the inhibited reaction, t/z is plotted against
ln (1 - z/zz)/z. A straight line is obtained, because the
following linearized form of eqn. (26) is valid:

t 1 a ln(l-z/zl) (32)
z p p z

The progress curves plotted for several different values
of [I]t will give thus the corresponding values of p*.

(ii) Plotting [I]t/[1- (p*/p)] against (p/p*), the slope
and the intercept on the [I],/[1- (p*/p)] axis, for the
straight line obtained in accordance with eqn. (31), will
give KI' and [E]l respectively.
We would recommend that values for KI' and [E], are

determined by fitting eqns. (26) and (27) to the progress-

curve data by non-linear regression, perhaps using the
approximate values determined graphically as initial
estimates for the regression. We expect pure non-com-
petitive inhibition would be quite rare and have not
attempted fitting the relevant equations to simulated
data, but the principle would be the same as that outlined
for eqn. (24).

Conclusions
The general approach described here can be applied to

both classical and tight-binding inhibition. Therefore, if
we are not sure about the strength of inhibitor binding,
we can assume it to be a tight-binding inhibitor and
proceed as described above. Indeed, Morrison (1969)
mentioned that the initial-velocity equation that
characterizes the tight-binding inhibition (eqn. 3) reduces
to the form of the classical-type inhibition if

[Lt << DI(NiKi)
Thus, if we decide to use progress-curve analysis in
characterizing an unknown inhibitor, it is useful to begin
with the more general treatment described in the present
paper. Clearly, if we conclude that our inhibitor is of a
classical type, we can then re-analyse our experimental
data by using simpler techniques (e.g. Waley, 1982).

In the present paper we have considered only the case
of 'dead-end'-complex-forming inhibitors, often called
'linear' inhibitors. For the more complex case of
'hyperbolic' tight-binding inhibition, in which the
enzyme-inhibitor complexes are still able to yield the
reaction product, the equations given here are not valid.
However, a method for determining inhibition constants
from initial-velocity data in this situation has been
reported (Szedlacsek et al., 1988). For 'linear' tight-
binding inhibitors, we prefer to use the progress-curve
analysis instead of the initial-velocity measurements,
because of the richness of data offered by the former.

This work was supported in part by C.I.M.C.-Bucharest and
by the Australian Research Council.

REFERENCES
Ackermann, W. W. & Potter, V. R. (1949) Proc. Soc. Exp. Biol.
Med. 72, 1-9

Atkins, G. L. & Nimmo, I. A. (1973) Biochem. J. 135, 779-784
Boeker, E. A. (1984) Biochem. J. 223, 15-22
Cleland, W. W. (1963) Biochim. Biophys. Acta 67, 104-137
Duggleby, R. G. (1984) Comput. Biol. Med. 14, 447-455
Duggleby, R. G. (1985) Biochem. J. 228, 55-60
Duggleby, R. G. (1986) Biochem. J. 235, 613-615
Duggleby, R. G. (1988) Biochem. Med. Metab. Biol. 40,

204-212
Duggleby, R. G. & Ward, L. C. (1988) Comput. Biol. Med. 18,

245-251
Duggleby, R. G. & Wood, C. (1989) Biochem. J. 258, 397-
402

Fernley, H. N. (1974) Eur. J. Biochem. 43, 377-378
Folk, J. E. & Schirmer, E. W. (1965) J. Biol. Chem. 240,

181-192
Greco, W. R. & Hakala, M. T. (1979) J. Biol. Chem. 254,

12104-12109
Henderson, P. J. F. (1972) Biochem. J. 127, 321-333
Kellershohn, N. & Laurent, M. (1985) Biochem. J. 231, 65-74
Lazdunski, M., Vincent, J.-P., Schweitz, H., Peron-Renner, M.
& Pudles, J. (1974) Bayer Symp. 5, 420-431

Matyska, L. & Kovar, J. (1985) Biochem. J. 231, 171-177
Morrison, J. F. (1969) Biochim. Biophys. Acta 185, 269-286

1990

652



Progress-curve equations for tight-binding inhibitors

Sculley, M. J. & Morrison, J. F. (1986) Biochim. Biophys. Acta
874, 44-53

Szedlacsek, S. E. & Ostafe, V. (1987) Rev. Roum. Biochim. 24,
347-351

Szedlacsek, S. E., Ostafe, V., Serban, M. & Vlad, M. 0. (1988)
Biochem. J. 254, 311-312

Waley, S. G. (1982) Biochem. J. 205, 631-633

APPENDIX

Integration of eqn. (17)
Competitive, uncompetitive and non-competitive inhi-

bition. As mentioned, we have here sl * s2, both having
real and negative values (as P4/P2 > 0) and -P3/P2 < 0)

Let us define a new dependent variable x by:

V(P2 2 + 2p3 +p4) = (P2) ( - x (Al)
i.e.

x= /( 2 and d= 2x(s2_s )dx (A2)

Substituting ( and dC from eqns. (A2) into eqn. (19) we
get:

dt x(q1x2+q2x+q3)
dx (x-x1) (x-x2)2(x-x3) (X-X4)

(A3)

Williams, J. W. & Morrison, J. F. (1979) Methods Enzymol.
63, 437-467

Williams, J. W., Morrison, J. F. & Duggleby, R. G. (1979)
Biochemistry 18, 2567-2573

Williams, J. W., Duggleby, R. G., Cutler, R. & Morrison, J. F.
(1980) Biochem. Pharmacol. 29, 589-595

The expressions of coefficients Ai, B1 and B2 are:

r2(2q, + q2) + q2 + q3A = 2(r2- 1)

r2(2q, - q2)- q2 + 2q3
2 2(r2- 1)

A q1r2+q2r+q3
3 r2-1

q1r2-q2r+q3
4 r2= 1

ql+q2+q3
1 2

B ql-q2+q3
2 2

(A7)

Now, integrating eqn. (A6) over time from 0 to t we
obtain:

= p- (A X-ln +,(X-1)(x-xo) + Xo1)(120)]

where x0 is the value of x when t = 0:

xo= 2 2where
X1= 1

X2 = - 1

X3 = \/V(s2/S1) = r

X4= - r

qo = (1 -r2)/p
q1 =P5sl+P6
q, = V(P2) (s1- s2)
q3 = -(P5 2 +P6)

I
I

Pure non-competitive inhibition. We observe from
(A4) Table 1 that in this case a and b have particular forms,

i.e.:

a = 81K, | (AIO)
b= IIK,J

Introducing these values in eqn. (20) and using the
(A5) values of p1 to p6 so obtained, eqn. (19) becomes:

dt 1 _+_
d

= _
*

_ (Al 1)

P = 2[E]P (v(K' + [I]t-[E])2 + 4[E]t KI'}-(KI' + [I]t- [E]t))

Eqn. (A3) can be written as:

dt 1 (4Ai B1 B2
=- E 4- -+- ~~) (A6)

dx 2p +x-( ) (X X2))
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Eqn. (A1l) can be integrated directly, giving:
I Z=t=- z) -+yi ln(2).

Substituting C for (z --z) yields eqn. (26).
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and

(A8)

(A9)

where (A12)

(A13)
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