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A BASIC computer program for performing weighted nonlinear regression is described
and a listing of the program is given. The program, which is small and simple to use, has been
designed to be run by users with little knowledge of mathematics or computers. Robust
methods of analysis are described which may be applied to data in which experimental errors
are not normally distributed, and the program incorporates one such method. It is shown
that the program is useful for the analysis of data conforming to the Michaelis—Menten
equation, a single exponential, and to binding equations, and other applications are discussed.

The quantitative analysis of experimental
data frequently requires comparison with
some sort of mathematical equation or
model. All too often this analysis involves
a transformation of the data which are then
plotted and a straight line is drawn through
them. The slope and intercept may then be
transformed or combined in various ways to
obtain the parameters of the original
equation. For example Eq. [1] describes a

§ =yt (1]
first-order decay curve,! and the classical
method of analysis is to plot

In (y) against 7. From the slope (5) and the
intercept (/) the parameters are obtained
using kK = —S and y, = ¢/. A much better
method for the analysis of first-order decay
curves is to fit Eq. [1] directly to the data
by nonlinear regression. Although this type
of analysis is relatively straightforward,
nonlinear regression has made very little
impact in biochemistry with the notable ex-
ception of enzyme-kinetic studies.

A great many packaged computer pro-

! Throughout the paper a distinction will be drawn
between y, the observed value of the dependent
variable; y, a value calculated for a particular set of
parameter values; and y the true, but usually un-
known, value.

grams are available for performing non-
linear regression analysis but these are,
without exception, long and sophisticated
programs designed to be run on large com-
puters. In this paper, a simple BASIC non-
linear regression program is presented
which can be run on mini- or even micro-
computers. Some of the underlying theory
is presented but a understanding of this
theory is not a prerequisite for using the
program. The program has been deliberately
limited to the situation in which the equation
to be fitted has two parameters, as such
equations occur quite commonly.

THEORY

Transforming experimental data into a
form which may be plotted as a straight line
is a useful method of displaying the data but
it is not a reliable method for its analysis.
Experimental errors can be grossly mag-
nified as is the case with the Lineweaver—
Burk plot of enzyme —kinetic data and fitting
of a straight line to the transformed data
will not, in general, yield the ‘‘best’’ values
for the parameters. This is true, regardless
of whether the fit is performed ‘‘by eye” or
by linear least-squares analysis. Careful
weighting of the transformed data may com-
pensate for the distortion in certain in-
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stances but in others, such as a Scatchard
plot in which the observed variable appears
on both axes, distortion is unavoidable. If
transformation of the data is to be eliminated
it is necessary to fit the mathematical
equation to the data directly. The form of
the equation is not usually a matter of
choice, but rather it depends on some under-
lying theoretical model. Generally, these
theoretical considerations lead to an equa-
tion which is nonlinear in the parameters
and the fitting procedure will involve non-
linear regression.

On the whole, biochemists regard non-
linear regression with a mixture of awe and
suspicion, as something which is beyond
their capacity to comprehend. In fact it is
quite simple, requiring little more than a
knowledge of elementary algebra and in this
section the basic principles are set out.
Later, a simple and flexible computer
program, which embodies these principles,
will be described.

Classical Methods

Nonlinear regression. The fundamental
ideas underlying the Gauss—Newton method
of nonlinear regression have been described
by Wilkinson (1). These ideas are best
understood against a background of the
principles of linear regression which will be
described briefly. Consider the case where
we wish to fit Eq. [2] to a set of N observa-
tions, where a, and a, are parameters to

Y =ax;+ax, [2]

be estimated and x, and x, are independent vari-
ables. (This is not intended to imply that x, and
X, are necessarily independent of one another;
for example, x, may equal x%). To estimate
a, and a, we first form the sums

S1= 2 wx3;so= Y wxXy; S5 = > wxi;
S4= 2 WX1Y; S5 = 2 WXp),

where w is a nonnegative ‘‘weight’’ at-
tached to each observation, and which is dis-
cussed in detail below. The parameters may

be calculated using
a, = (85354 — 5555)/A
as = (5155 — 5254)/A

where
A =555 — s2.

To calculate the standard errors of a; and
a,, we calculate the sum of squares of
residuals (s¢) and the residual standard error
(rs) using

ss= T wly — 9
re = [sel(N — 2)1'

The standard errors of ¢, and a, are given by
SE(a,) = ry(sy/A)V?

SE(a,) = ry(s,/A)"?

The values of a, and a, calculated above
are ‘‘best-fit’’ values in the sense that they
minimize the weighted sum of squares, sg.
This is necessarily so because the formulae
for a, and a, are found by differentiating
s¢ With respect to a, and a,, setting these
derivatives equal to zero and solving the
resultant simultaneous equations.

For nonlinear equations, a similar pro-
cedure does not lead to a simple solution
and we cannot calculate the best-fit values
for the parameters in a single step. What can
be done in a single step is to take some
estimates of these values and correct them
to give better estimates.

Suppose we are trying to fit a nonlinear
equation in which there is a single
parameter, b:

y =£(b)
An estimate, b, will differ from the best-fit

value, b, by an unknown amount g:
E =b + q.

From the Taylor series we may write

y=fb +q

=1®) + af '®) + "6)

q3 m b ...
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where f', f”, and so on denote successive
differentiation with respect to b. If we ignore
all the terms in g and beyond, represent
f(b) as 7, and replace the unknown 3 with
the experimental y, we can rearrange to get
y — 3 =qf'(b).
In other words, an approximate value for
g can be found by linear regression in which
the difference between the experimental and
the calculated value of y is treated as the
dependent variable while the derivative f'(5)
is treated as the independent variable. The
value for g so derived will not be exactly
correct due to the approximation in ignoring
high-order terms of the Taylor series. How-
ever, the newly calculated value of b may
be refined by applying this correction pro-
cedure repeatedly, a process known as
‘‘iteration.”

This concept may be generalized to cases
in which there are more than a single
parameter. Consider the arbitrary function
described by Eq. [3], where b, and b, are

)’} =f(b19b2;X)5 [3]

nonlinear parameters and X represents the
values of one or more independent variables. If
the initial estimates of the parameters are b,
and b,"”, we may calculate corrections
(¢, and g,) to these parameters by fitting
the equation

Z =qp1t+ qaDs

in which z is the residual (y — y) while p,
and p, are the partial derivatives, 8y/8b, and
8y/8b,. The coefficients, g, and g,, are esti-
mated as described above for the linear case
and are used to correct the values of the
nonlinear parameters

b = b,® + g,
b, = by® + g,.

These new estimates of the parameters may
then be refined in further iterations. When
g, and g, are negligible (‘‘convergence’’),
the standard errors of b, and b, are equal
to those of g, and g,, respectively (1), and

are calculated as described earlier.

Partial derivatives. We saw above that
in nonlinear regression the calculation of the
corrections (q) requires values of the partial
derivatives (p) which are treated as in-
dependent variables. Ideally, these deriva-
tives should be obtained by analytical dif-
ferentiation of the nonlinear function (Eq.
[3]), which may involve some tedious
algebra. In practice, the derivatives can be
calculated to the reqrired precision by
numerical differentiation which avoids the
algebra. The function (Eq. [3]) is evaluated
after the parameter b, is perturbed by an
amount d,:

y' =f(b, + dy, by; X)

and a first-order approximation of p; is
given by

p1=(' —y)d,.

A more accurate value may be found using
a second-order approximation if the func-
tion is evaluated at a second point:

V' =f(b, — dy, bs; X)
p1=0Q' —y")2d,.

A value for p, is found by applying this
same procedure to b,. In the computer pro-
gram to be described later, d, and d, are
chosen to be 2% of b, and b,, respectively.

Weighting. It may happen that we have
advance knowledge that some observations
are more accurate than others and this in-
formation should be incorporated in the
analysis. This is achieved by weighting each
observation by an amount (w) which is
inversely proportional to its variance, so
that fitting involves minimizing the weighted
sum of squares, s¢. This same weight must
also be applied in forming the sums s,-s;
which are used to calculate regression co-
efficients. Frequently, these a priori weights
are calculated from some simple weighting
function. For example, the standard devia-
tion of y may be approximately propor-
tional to y in which case w = 1/y? will be
used as the weighting function. One of the
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methods of robust regression described be-
low is based on weighting.

Robust Methods

Robust regression. The classical method
for fitting a function to experimental data
involves minimizing the sum of squares of
residuals. Since each residual (z) is squared
in the summation and as the worst ob-
servations will have the largest residuals,
the fit tends to be dominated by these ob-
servations. A drastic solution to this dif-
ficulty is to discard the worst observations
but to do this it is necessary to introduce
an essentially arbitrary division between
acceptable and unacceptable observations.
A gentler procedure is to use a ‘‘robust’
method in which the residuals are modified
so that less emphasis is placed on the
larger ones.

Wahrendorf (2) has described a robust
method which he has applied to the analysis
of Scatchard plot data. Briefly, the residual
sum of squares is replaced with the func-

tion Y p(z):
z% if 2| <¢

e = 2c[z|—c2 if IZ]ZC,

where ¢ is a ‘‘robustness constant.”” The
value of p(z) increases as the square of z
when z is numerically less than ¢, but
thereafter increases as the absolute value of
z. There is a smooth transition at z = ¢. If
c is chosen to be very large, this method is
indistinguishable from the normal least-
squares method.

A somewhat different method has been
described by Mosteller and Tukey (3) in
which each squared residual is multiplied by
a ‘‘bisquare weight,”’ b,

_ (A —w)? i fu] =<1

b
0 it |u| >1,

where u = z/c and ¢ is the robustness
constant. If z > ¢, that particular observa-
tion is ‘‘weighted-out’’ of the analysis (i.e.,
ignored), while moderate-sized residuals
acquire a fractional weight. Observations

which agree well with the fitted function
have a small residual and are given close
to a full weight of 1.0. As with a priori
weights, the bisquare weight is applied in
calculating the sums s,—sg from which the
regression coefficients are calculated.

If ¢ is chosen to be very large, b, will
equal 1.0 for all observations and we have
the usual least-squares method. Usually we
will want to choose a value of ¢ which is
large enough that |u| <1 for the great
majority of observations. In the computer
program to be described later, a value equal
to six times the mean absolute residual
(c =63 |z|/N)has been utilized but Mosteller
and Tukey have pointed out that many other
values will also work well. Bisquare weight-
ing can be used in conjunction with a priori
weights in which case the final weight ap-
plied will be the product of b, and w. In the
calculation of b, and c¢ for this latter case,
we must use the weighted residual zw'/? in
place of z alone.

Median methods. If experimental data
were free of error, values for the two
parameters of Eq. [3] could be obtained by
measuring y at two points and solving the
resultant nonlinear simultaneous equations.
In practice, of course, data do contain some
variability and more than two measurements
are made. The purpose of the additional
measurements is to increase the reliability
of the parameter estimates and, more im-
portantly, to permit the calculation of a
measure of this reliability. Cornish-Bowden
and Eisenthal (4) have suggested a robust
method of analysis for the case where
Eq. [3] represents the Michaelis—Menten
equation, and this may be adapted to any
two-parameter, nonlinear equation. Values
for the parameters are calculated from each
possible pair of measurements and these
N (N — 1)/2 values for b, and b, are used to
determine the best estimates of the values.
It was originally proposed (4) that the
median values of b, and b, should be taken
as the best estimates but it was subsequently
pointed out (5) that the median values for

b, and b, may be biased. It is usually
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possible to find combinations of b, and b,
which are median—unbiased and the pre-
ferred procedure is as follows. For each pair
of measurements, b, and b, are calculated
and these are transformed to the median—
unbiased combinations, ¢; and c¢,. These
latter values are separately ranked in order
of their magnitude and the centrally ranked
values are located. Finally, the best esti-
mates of b, and b, are calculated from the
median values of ¢; and ¢, by reversing the
transformation. The type of transformation
involved is usually quite simple and an ex-
ample will serve to illustrate this point.
The median values of b; =V and b, = K
of the Michaelis—Menten equation are biased
whereas ¢; = 1/V and ¢, = K/V are me-
dian—unbiased. The reverse transformations
which are used to calculate V and K from
the median values of ¢, and ¢, are equally
simple: V = 1l/c; and K = c,/c,.

Confidence intervals for b, and b, may be
found by an extension of this median method
(6). Kendall’s §* statistic is calculated to
find the ranks which enclose the confidence
interval at any desired probability level, and
the values of ¢, and ¢, which occupy these
ranks are determined. Limits on the param-
eters are found by transforming c; and c,
to b, and b,.

An alternative median method has been
described by Duggleby (7,8) which is based
on a special experimental design. Multiple
determinations of y are made under two sets
of experimental conditions and the median
of each set of replicates is taken as an
estimate of y. Values for b, and b,, which
are calculated by solving the resulting two
simultaneous equations, will be the best
estimates of these parameters. This method
has the advantage that it avoids the necessity
of transforming into median—unbiased com-
binations of the parameters. Other advan-
tages have been described previously (7,8).

All median methods require the algebraic
solution of a set of nonlinear equations.
The solutions will depend on the form of the
equations and for this reason it is dif-
ficult (but by no means impossible) to in-

corporate a median method into a general
computer program. Thus, in the program
described below, robustness has been
approached by the bisquare weighting
method. For the sake of completeness,
the solutions required for median methods
are also given for the specific models
considered below. These solutions may be
useful for calculating initial estimates
of the parameters.

RESULTS

A computer program embodying the non-
linear regression principles outlined under
the Theory section has been written in
BASIC. The program was developed using
BASIC-11, a version of this language which
is used in the PDP-11 series of computers.
Exploitation of special features of this
version of the language was deliberately
avoided to facilitate transfer of the program
to other computers which will support the
BASIC language.

A listing of the program is shown in Fig. 1
and while it might appear that the program
is quite long, this impression is largely
illusory. Of the 176 lines in the program,
68 are REM statements which contribute
nothing to the operation of the program but
serve solely to document it. Of the remaining
108 lines, 26 print either blank lines or
headings. Thus, the heart of the program
is less than one-half of the total and com-
pression of the source code may be achieved
readily, an important consideration for
microcomputers where storage limitations
are critical.

The only statement which depends on the
equation to be fitted is line 2650 which,
in Fig. 1, describes the Michaelis—Menten
equation. Other models may be fitted by
replacing this line with the appropriate
expression. For example, the first-order
decay curve described by Eq. [1] might
be written:

2650 G = B(1)*exp(—B(2)*X).

Partial derivatives are calculated by nu-
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1000 REW 1880 Z=Y(I)-6

1010 REN  NONLINEAR REGRESSION PROGRAN FOR TWD PARAMETER EQUATIONS 1890 R5=SOR(W(I))sZ

1020 REN 1900 R1=R1+ABS(RS)

TR0 RER Bilv i shaiavasnidansonesssasenyiovssasiinsosssbinbasnecays A L L B B e ) P e W Sl G A s B S I
1040 REN  THE FOLLOWING ARRAYS ARE USED: 1920 REN  CALCULATE THE PARTIAL DERIVATIVES

1050 REW Xt INDEPENDENT VARIABLE 1930 REN
1060 REN Y DEPENDENT VARIABLE 1940 FOR J=1 T0 2

1070 REN v # PRIORI WEIGHTS 1950 B(J)=1.02¢B(J)

1080 REN B THE PARANETERS 1960 GOSUB 2590

1090 REM P PARTIAL DERIVATIVES 1970 U=6

1100 REM (] CORRECTION VECTOR, AND STD ERRORS 1980 B(J)=B(J)+.98/1.02

1110 REN 1990 GOSUB 2390

1120 REN  THE FOLLOVING VARIABLES ARE USED: 2000 B(J)=B(J)/.98

1130 REK 1,4 LODP INDICES 2010 P(J)=(U-6)/(.04%B(J))

1140 REN N NUNBER OF DATA POINTS 2020 NEXT J

1150 REN $1-56 SUN USED IN REGRESSION 2030 REN ...

1160 REN X CURRENT VALUE OF X1 2040 REM  CHE!

1170 REN 6 THEORETICAL VALUE OF Y 2050 REN +ovvnnrnunonnans

1180 REM 1 RESIDUAL 2060 R3=1

1190 REN v VALUE OF 6 USED TO CALCULATE P 2070 IF B$="N" THEN 2100

1200 REM D DETERNINANT USED IN REGRESSION 2080 IF 11=1 THEN 2100

1210 REM c CONVERGENCE TEST QUANTITY 2090 GOSUB 2480

1220 REN v RESIDUAL VARIANCE BUODTREN 2o o it ots s s ea i e Sre A sm i bo R s b s e
1230 REN H INPUT STD DEV 2110 REX  FORM THE VARIOUS SUNS

1240 REN I8l ITERATION COUNTER 2120 REN ....... A g e Rty o e s s b
1250 REN R1-RS USED FOR BISQUARE VEIGHTING 2130 S1=51+RIWCDIAP(1)-2

1260 REM 2140 S2=52+4R3IsU(1)P(1)sP(2)

1270 REN  THE STRINGS @ AND BS ARE USED TO DETERWINE WEIGHTING 2150 §3=53+R3I*U(1)3P(2)"2

1280 REM ..... P S e e e R R e 2180 S4=54+RIsU(1)*P(1)#2

1290 REN 2170 §5=55+RI*U(I)*P(2)s2

1300 DIN X1(20),Y(20),U(20) 2180 S6=56+RISW(1)9Z°2

1310 PRINT "HOW NANY DATA POINTS® 2190 NEXT 1

1320 INPUT N1 T T e S P e S s e s e
1330 PRINT 2210 REN  CORRECT THE PARANETERS AND CHECK FOR CONVERGENCE

1340 PRINT "WHAT TYPE OF WEIGHTING ..." 2220 RER o s oumiane ST L AR R BICS S WM s
1350 PRINT * CONSTANT STD DEV * 2230 R2=6+R1/N1

1360 PRINT * PROPORTIONAL STD DEV (P)* 2240 D=5153-52°2

1370 PRINT * BETWEEN THE ABOVE  (B)" 2250 Q(1)=(S3#54-52¢55)/D

1380 PRINT * STD DEV SUPPLIED (5)" 2260 0(2)=(51955-52+54)/D

1390 INPUT Q8 2270 C=ABS(Q(1)/B(1))+ABS(Q(2)/B(2))

1400 PRINT 2280 B(1)=B(1)+Q(1)

1410 PRINT "BISQUARE VEIGHTING T00" 2290 B(2)=B(2)+0(2)

1420 INPUT BS 2300 PRINT B(1),B(2),56

1430 PRINT 2310 IF £>1.00000E-05 THEN 1720

1440 PRINT "INPUT INDEPENDENT VARIABLE, DEPENDENT VARIABLE™; 2320 REW «uzseenssrcanesnntonon
1450 IF @$<>"S* THEN 1470 2330 REN  RUN HAS CONVERGED. CALCULATE FINAL RESULTS

1480 PRINT * AND STD DEV™; 2340 REN cueennnnnee R e T e T R s
1470 PRINT 2350 V=56/(N1-2)

VAR REW 50t se. o e e nar ettt s b e s bca o tar me eles o B LSRR T 2360 0(1)=SQR(V+§3/D)

1490 REN  INPUT THE DATA 2370 0(2)=SAR(V*S§1/D)

1500 REN cevennnnnns s PR e R W s I s S 2380 PRINT

1510 FOR 1=1 10 NI 2390 PRINT “FINAL VALUES ..."

1520 IF @$="S" THEN 1600 2400 PRINT

1530 INPUT X1(I),Y(I) 2410 PRINT *BU1) = ",B(1)," +/- *,0(1)

1540 W(D)=1 2420 PRINT "B(2) = *,B(2),* +/- *,Q(2)

1550 IF @$="C" THEN 1620 2430 PRINT .

1560 W(1)=1/Y(1) 2440 PRINT " X Y Y(HAT) DIFF"

1570 IF @9="B* THEN 1620 2450 PRINT

1580 W(I)=¥(1)"2 2460 FOR I=1 TO N1

1590 60 TO 1620 2470 X=X1(I)

1600 INPUT X1(I),Y(I),§ 2480 GOSUB 2590

1610 W(I)=1/8°2 2490 PRINT X1(I),Y(I),6,Y(I)-B

1620 NEXT 1 2500 NEXT I

1630 PRINT 2510 PRINT

1640 PRINT "ENTER ESTINATES OF THE PARANETERS® 2520 PRINT “END OF PROGRAN™

1650 INPUT B(1),B(2) 2530 STOP

1660 PRINT 2540 REN . weesn

1670 PRINT *  B(1) B(2) 50" 2550 REN  TOO WANY ITERATIONS

HABOREN - oioinsnsssasinssarsnjoies 2560 REN: oo susonvssuntoensessinsss aisanniacine
1690 REN  BEGIN NONLINEAR ITERATIONS 2570 PRINT *TERNINATED AFTER 10 ITERATIONS*

1700 REN .. i 2580 GO TO 2350

1710 11=0 ST e e s L M e AR R I R

1720 T1=I141 2600 REN  INSERT FITTED FUNCTION HERE IN THE FOR

1730 IF 11>10 THEN 2570 2610 REN

1740 §1=0 2620 REM B=F(B(1),B(2),X)

1750 §2=0 2630 REN

1760 §3=0 2640 REW s.evscnsznsccass wosssesseens R S D L e s S B
1770 54=0 2650 G=B(1)eX/(B(2)+X)

1780 §5=0 26460

1790 56=0 2670

1800 R1=0 2680

1810 FOR I=1 T0 N1 2690

IBORER oinoiioars v rmvns hinest Tessininn b s et rael s S S s ab s P A e e RS 5 E RN S s TR B S B e P Ui e
1830 REN  CALCULATE THE THEORETICAL VALUE OF Y, THE RESIDUAL 2710

1840 REN  AND R1,R5 FOR BISQUARE WEIGHTING 2720 RA=(RS/R2)"2

1850 REM ... 2730 IF R4>=1 THEN 2750
1860 X=X1(1 2740 RI=(1-R4)"2
1870 GOSUB 2590 2750 RETURN

FiG. 1. BASIC computer program for weighted nonlinear regression analysis. In general, the
variable names used in the program correspond to those used in the Theory section. The major excep-
tions are quantities used in calculating bisquare weights (here named R1-RS) and y (here named G).
The only library functions used are the square root function (SQR) and the absolute value function
(ABS). The circumflex (") which appears in several places (e.g., line 1580) indicated exponentiation.

merical differentiation (lines 1940-2020) tested. This group of statements can be
and this method has been found to be satis- replaced with the appropriate expressions
factory for all the models which have been for analytical derivatives if this is felt to
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be desirable. In rare instances when a
parameter value happens to fall close to
zero, the perturbation used to calculate the
derivative may be too small. There is no
universal remedy to this situation but the
program user should be aware of it. Ob-
viously, a value of zero should never be
used as an initial estimate of a parameter.
A number of weighting options are available
including equal weighting, 1/y weighting and
1/y* weighting and others may be easily
included. Alternatively, the standard devia-
tion of y (or a factor proportional to it) can
be specified explicitly. Each of these weight-
ing options is available both with and without
bisquare weighting. Iteration is continued
until the sum of the absolute values of the
relative changes in the parameter values
(i.e., 3 |q/b]) is less than 1075 at which time
the program is considered to have con-
verged. If convergence is not reached in 10
iterations, a warning is issued and the current
values of the parameters are printed.

The program has been tested with a variety
of models and three of these will be de-
scribed. These do not represent the limit of
flexibility of the program. For each model,
the equations necessary for the median
methods described under the Theory section
are given as well as the median—unbiased
combinations of the parameters.

Substrate saturation kinetics. Saturation
of an enzyme by its substrate frequently
obeys the familiar Michaelis—Menten equa-
tion [4] and the program shown in Fig. 1

V-x
51 ; 4
% K + x 4]

will fit this equation to experimental data.
The accuracy of numerical differentiation
was assessed using this model by compar-
ing the values of derivatives calculated
by this method with those obtained using
the analytical derivatives 3y/8V = 8y/V
and 6y/6K = —y%Vx. Over a range of x val-
ues from zero to 800K, the derivative for V
calculated by the numerical method was
found to be accurate to within 0.0003%,

a not unexpected finding since the model is
exactly linear in V. The derivative for K
is somewhat less acccurate but in no case
did the error exceed 0.05% of the value.
Such errors are of no consequence when
fitting to experimental data as is indicated
using some data for the enzyme prephenate
dehydratase (9), assuming constant standard
deviation in y. The fit obtained using ana-
lytical derivatives gave? V = 18.1554
+ 0.4877 U/mg and K = 491.075 = 30.793
uM while the corresponding values using
numerical differentiation were 18.1555
+ 0.4876 U/mg and 491.078 + 30.787 uM.
For all practical purposes, the figures ob-
tained by the two methods are identical.

If median methods are used to estimate
the kinetic parameters, solutions for the
resultant simultaneous equation are

K = (y2 — y)/(yi/xy — yalxs)
V = (K + x)y/x;.

The median—unbiased combinations are
1/V and K/V (5).

First-order decay . The equation for a first-
order decay curve has been given previously
(Eq. [1]) while the solutions required for
median methods are

k=(ny, — Iny)/(t; — t5)

Yo =y €k,

Bothk and y, are median—unbiased. Nimmo
and Atkins (11) have compared various
methods for analyzing this type of data and
have observed that their computer program,
which uses a rather sophisticated nonlinear
regression method, failed to converge with
30-40 out of 500 sets of simulated data.
This simulation was repeated using data
containing normally distributed errors with
a standard deviation equal to y'/2 (their case

2 The absurd number of decimal places given is
necessary to illustrate that analytical and numerical
derivatives do, in fact, give different results. There is
no suggestion intended that V and K are determined
to an accuracy of six significant figures.
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TABLE 1

STABILIZATION BY BISQUARE WEIGHTING OF THE FIT
T0o BINDING DATA WHEN AN OUTLIER IS PRESENT”

Without bisquare With bisquare
weighting weighting
Value of y
atx = 3.0 K N K N
2.8 1.701 1.061 0.955 0.996
2.6 1.311 1.021 0.955 0.996
2.5 1.170 1.009 0.958 0.996
2.4 1.054 1.001 0.994 0.998
23 0.957 0.996 0.963 0.998
2.2 0.876 0.993 0.919 0.996
21 0.808 0.993 0.952 0.996
2.0 0.749 0.994 0.955 0.996
1.8 0.653 1.001 0.955 0.996

“ A simulated set of data was obtained by solv-
ing Eq. [8] for y at x values of 0.5, 1.0, 1.5, 2.0,
3.0, 4.0, 5.0, 6.0, 8.0, and 10.0, assuming K = N = 1.
These theoretical data were rounded to one decimal
place and the point at x = 3.0 changed from this
simulated value of 2.3 to the value indicated. These
data were then fitted to Eq. [8] assuming constant
variance both with and without bisquare weighting to
obtain the values of K and N. Due to the errors
introduced by rounding, the fit obtained using the value
of 2.3 does not give values for K and N of exactly 1.

N2) and using weights? of 1/y? (equivalent to
their method WNL). The program described
here failed to converge within 10 iterations
for 30 of these sets of simulated data, so
while the program is no better than that used
by Nimmo and Atkins, it is no worse either.
Ten of these failures were selected for
further study and in each case satisfactory
convergence could be achieved by allowing
more than 10 iterations* or by adjusting
the initial estimates of y, and k.

Binding equations. The binding of a ligand
to a comparable concentration of an ac-
ceptor is described by Eq. [5] in which F and
B represent the concentrations of free and

3 These are not the correct weights for the error
distribution that is being simulated. These incorrect
weights are used so that the results could be com-
pared with those of Nimmo and Atkins (11).

4 The iteration limit may be changed by modifying
line 1730. This has often been found to be necessary
when the bisquare weighting option is selected.

B = N_F [5]
K + F

bound ligand, respectively, N is the total
concentration of binding sites and K
is the dissociation constant of the ligand-
acceptor complex. This equation is similar
in form to the Michaelis—Menten equation
but now we must take account of the fact
that there is significant depletion of free
ligand by complex formation. Usually, only
one of B or F will be measured while the
other is calculated from the fact that B plus
F equals the total ligand concentration (x).
Thus we may consider two different cases
depending on whether B or F is measured.
If B is the measured quantity (y), Eq. [5]

is rewritten as Eq. [6] which, upon rear-
rangement, gives Eq. [7], a quadratic which

N&x —3)

== 6
K+x-—-3y [6]

2—J3K+N+x)+Nx=0 [7]

may be solved for y by the usual methods.
Solutions for the simultaneous equations
generated by median methods are

(Y2 =y — y)xz — ¥2)
YiXe — YaXi

yiK + x; =y

X1 — W1

K:

N:

The median—unbiased combinations of K
and N are 1/N and K/N.

In the situation where unbound ligand is
the measured quantity we again get a quad-
ratic (Eq. [8]). Note that this equation may

92+ (K +N —x)—Kx =0 [§]
be obtained from Eq. [7] by interchanging K
and N and reversing their signs and these same
substitutions may be used to obtain the equa-
tions required for median methods. The
median—unbiased combinations are, as before,
I/N and K/N.
The usefulness of bisquare weighting was
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assessed using some simulated data for the
case where free ligand is measured and the
results obtained are shown in Table 1.
Without bisquare weighting, the fit is very
sensitive to the presence of an outlier with
K changing by 80% from its ‘‘true’’ value
for a change of only 20% in the value of
1 of 10 data points. With bisquare weight-
ing introduced, the fitted value of K responds
to small deviations in the aberrant data
point but larger deviations are essentially
ignored. A similar but less pronounced
effect is seen for the values of N. The rela-
tive insensitivity of N to the presence of an
outlier is ascribed to the fact that the spurious
data point occurs at a moderately small x
value. Fitting (without bisquare weighting)
to a data set with an outlier at a high x value
gives rise to changes in N which are much
larger than those seen in Table 1.

DISCUSSION

The analysis of experimental data in
biochemistry, as in other quantitative
sciences, frequently requires that the data
be compared with a mathematical equation
which describes an underlying theoretical
model. In many instances this equation is
nonlinear in the parameters and the ap-
propriate method of analysis will involve
fitting the equation to the data by non-
linear regression. The frequently used alter-
native of transforming the data into a linear
form retains its popularity because nonlinear
regression computer programs have not
been designed with a laboratory environment
in mind.

This paper presents a nonlinear regression
computer program with a number of desir-
able features. It is written in BASIC, a
language which is available on most com-
puters and which is one of the simplest
languages for the novice to understand.
Those who are proficient in FORTRAN
should be able to learn the elements of
BASIC in a few hours. The program has
been deliberately kept short to encourage
implementation and to facilitate use on mini
and microcomputers for which program

size can impose limitations. The equation
to be fitted to the data is specified in a single
statement so changing to other equations is
extremely easy. Partial derivatives are
calculated by a numerical method to relieve
the user of the sometimes onerous task of
deriving these functions algebraically. A
variety of weighting options are available
which should cover most commonly en-
countered situations and others can be
added easily. Finally, a bisquare weighting
option is available which detects and re-
duces the effects of observations which
deviate markedly from the fitted equation.
The output from the program consists of
best-fit values of the parameters, standard
errors of these values, and a comparison
of the experimental data with the fitted
equation. For a nonlinear equation these
standard errors are only an approximate
guide to the precision of the parameters and
should be interpreted with this in mind.
More reliable methods for estimating pre-
cision have been described (10) but these
cannot be incorporated into the present
program without a substantial increase in
complexity. The aim was not to produce a
program which could cope with any contin-
gency, but rather to produce one which
would be useful in many situations, and
which is short and simple to use. Restricting
the size of the program makes it inevitable
that there will be limitations of capability
but these are not excessive. The main limita-
tion (and this is not fundamental) is that the
program will only fit equations in which there
are two parameters to be estimated and
one independent variable. Clearly there will
be some models for which the program
cannot be used without substantial modifica-
tion. The second limitation is that the program
uses the Gauss—Newton method of non-
linear regression which is known to be in-
effective when initial estimates of the pa-
rameters are not reasonably close to the best
fit values. In spite of this, the program was
found to perform as well as a much more so-
phisticated program on a test problem (11).
Results have been presented from fitting
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three equations but these do not represent
the limits of applicability. Other models
which have been successfully fitted include
the analysis of Cy curves (12) and the three
compartment model

P BN )
Further applications could include the
determination of pK’s and stability con-
stants, the analysis of ultracentrifugation
data and of the effects of temperature on
enzymatic and chemical reactions. This list
is by no means exhaustive; the only limit
is the imagination of the user.
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