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Four methods for estimating the reliability of parameters obtained by non-linear regression are 
compared. Matrix inversion demands the least computational effort, but can be unreliable for over- 
determined models. The ‘jack-knife’ technique was found to give results of the right magnitude, but 
some unexplained discrepancies suggest that this method should be used with caution. A Monte 
Carlo method and the method of support planes were found to be in good agreement with matrix 
inversion, but both involve a substantial computational investment. The method of support planes 
is preferred as it gives information on the degree of non-linearity of the equation which is fitted to the 
data. 

In a recent article Cornish-Bowden and Wong [l] 
have applied the statistical tool known as the ‘jack- 
knife’ to the analysis of a set of enzyme-kinetic data. 
The motivation for using this procedure was that the 
conventional matrix-inversion method [2] for obtain- 
ing standard errors was unreliable when a complex 
rate equation was fitted to their data. Subsequently 
Duggleby [3] criticised this work and suggested that 
the failure of the matrix-inversion method may have 
resulted from an arithmetic problem which could be 
overcome by using a different computer program, a 
conjecture which has now been confirmed (R. G. 
Duggleby, unpublished results). 

It should not be imagined that the arithmetic prob- 
lems involved in inverting large matrices can be dis- 
missed lightly. Complex rate equations almost invari- 
ably lead to matrices which are difficult to invert with 
any accuracy, when using computational methods in 
which all numbers are rounded (or worse, truncated) 
to a finite number of digits. The application of the 
‘jack-knife’ to a problem in enzyme kinetics is welcome 
as it provides an alternative when the conventional 
method fails. The purpose of the present paper is to 
describe, in simple terms, two other methods for ob- 
taining standard errors : the Monte Carlo method and 
the support plane method. Each of these methods has 
been described by Chandler el al. [4] but are not well 
known to biochemists. 

It is shown that these two methods give results 
which agree with those obtained by matrix inversion, 
and that the ‘jack-knife’ also gives similar results. The 
data employed for this study are the well-known results 

of Roughton et al. [ 5 ]  on the binding of oxygen by 
haemoglobin. 

THEORY 

I t  is axiomatic that experimental data contain 
uncertainties. For each datum the measured value of 
the dependent variable (y) differs from the ‘true’ value 
by an unknown amount. Regression analysis involves 
fitting an equation or model to a set of data by mani- 
pulating the values of the parameters of the equation 
in such a way as to minimize the weighted sum of the 
squares of the residuals. The residual is the difference 
between the experimental value of y and that predicted 
by the equaton, while the weight given to each residual 
in the summation is inversely related to the estimated 
uncertainty in y .  Since each measurement contributes 
to  some extent to the determination of the value of a 
particular parameter (OJ, it must also contribute some 
uncertainty to the determination of ( I J .  It is this uncer- 
tainty that error analysis attempts to  quantify. 

Any particular set of data is a sample of an infinite 
number of potential data sets which could have been 
obtained. Each of these hypothetical data sets would 
yield a slightly different set of values for the param- 
eters and the standard error of a parameter value is a 
measure of this variability. Naturally the variability 
could be assessed by repeating the experiment several 
times but the effort invvlved make this method unat- 
tractive. Moreover, it fails to make full use of the 
information contained in a single set of data. If we are 
prepared to accept that the data set actually obtained 
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is representative of all possible sets, then we may simu- 
late other data sets with similar statistical properties. 
This is the basis of the Monte Carlo method. Each 
simulated data set will yield parameter values which 
differ from those obtained from the experimental data 
by an amount 4. The standard error for a particular 
parameter is then calculated as the root mean square 
of the 4 values, i.e. (C42/M)”2 where M is the number 
of Monte Carlo simulations. If required, the covari- 
ance of a pair of parameters @, and Or, may be calcu- 
lated as C4,$h/M. 

Regression analysis involves locating the lowest 
point on a sum-of-squares surface plotted in param- 
eter space (e.g. see Fig. 1 of Hoare [6]). If  this surface 
is relatively flat in a particular direction which is 
parallel to one of the parameter axes, then there is 
substantial uncertainty in the value of this parameter; 
a range of values give an equally good fit. Thus, a 
reasonable definition of the standard error of a param- 
eter might be the distance from the minimum to the 
limits of a contour in parameter space which connects 
all points where the sum of squares equals some partic- 
ular value. For equations which are linear in the param- 
eters, it can be shown [7] that the contour which corre- 
sponds to the normal definition of a standard error 
connects the points where the sum of squares is greater 
than that at the global minimum (So) by the factor 
1 + l j v  where v is the number of degrees of freedom. 
We can use this same definition for non-linear models: 
if a parameter is increased or decreased by one stan- 
dard error and the sum of squares minimized with 
respect to  the remaining parameters, then this new 
minimum value will equal S o ( 1  + l/v). A procedure 
which locates the values which satisfy this criterion 
will be a method for calculating standard errors. This 
is the method of support planes. 

METHODS 

The data were taken from Table 2 A  of Roughton 
et al. [5] and consist of ten measurements of the per- 
centage saturation (v) of haemoglobin solutions at 
specified oxygen pressures (p). The data were weighted 
as suggested by these authors and were analyzed 
according to Eqn (I ) ,  in which 

(1) 
25 (alp + 2 ~ 2 ~ ’  + 3a3p3 . ~ + ~~ 4a4p4) 

2 1 + alp + azp + a3p3 + u4p4 Y =  

a1 --a4 are parameters to be estimated. This equation 
was fitted to the data using a program which is based 
on Marquardt’s algorithm and which was obtained 
as part of QCPE307 from the Quantum Chemistry 
Program Exchange, Indiana University. Standard 
errors are calculated by a matrix-inversion method 
and experience has shown this program to be fairly 
accurate. The partial derivatives of Eqn (1) were 

obtained numerically, using a first-order approxima- 
tion [4]. 

Support-plane calculations were performed using 
an adaptation of the CURVFIT program, which is part 
of QCPE307, using STEPIT as the optimizing algo- 
rithm. Consider the parameter a1 : the best-fit value 
was perturbed by a small amount (d,) and Eqn (1) was 
fitted to the data, maintaining al at this new value. The 
sum of squares (S,) was calculated and a new pertur- 
bation (d ,+l )  calculated from a parabolic interpo- 
lation or extrapolation: d,+l = di/[v(S,/So - 
where So is the minimum sum of squares from the best 
fit, and v is the number of associated degrees of free- 
dom. This process was repeated using the new pertur- 
bation and continued until S, z So (1 + l / v )  when the 
standard error is equal to the current perturbation. 
A similar series of calculations was performed for 
each of the parameters. Monte Carlo calculations were 
performed as follows. Simulated data were generated 
by calculating the theoretical values of y from the best 
fit to the experimental data and adding to these a nor- 
mally distributed random number. These random num- 
bers were drawn from a population with a mean of zero 
and a standard deviation equal to the standard devia- 
tion of each data point as indicated by Roughton et al. 
[5], multiplied by the residual standard error obtained 
from the fit to the actual data (0.91735). These simu- 
lated data were fitted using the CURVFIT program 
and after 20 such simulations the standard errors of 
the parameters were calculated as described in the 
Theory section. 

The ‘jack-knife’ calculations were performed by 
fitting Eqn (1) to ten subsets of the data formed by 
omitting each of the original points in turn. The ‘jack- 
knife’ was applied as described by Cornish-Bowden 
and Wong [l], both with and without the logarithmic 
transformation that they employ. 

RESULTS 

The best fit of Eqn (1) to the data was obtained 
with the values a1 = 9.61 x a2 = 9 . 8 2 ~  lop3 ,  
a3 = 3.39 x and a4 = 3.11 x in good agree- 
ment with those reported by Roughton et al. [5] 

No difficulties were encountered in matrix inversion 
and the values obtained for standard errors agree with 
those reported by Roughton to within a few percent 
(Table 1). The ‘jack-knife’ gave comparable standard 
errors for u1 and a4 but the errors for u2 and u3 are 
larger by 37 and 65 % respectively. When the loga- 
rithmic transformation recommended by Cornish- 
Bowden and Wong [l] was omitted, the error for a2 
is reduced to a value near to that obtained by matrix 
inversion but the error for a3 is barely affected. 

The Monte Carlo method (20 simulations) gave 
errors which were between 3 and I 1  % too high, but 

(9.61 x 10-2,io.o x 10-3,3.35 x 10-3 and 3.10 x 10 - 3 ) .  
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Table 1. Esfimution of‘stundurd errors hy.four d ( & m t  methods 
Eqn (1) was fitted to  the data of Roughton et al. [ 5 ]  and crrors deter- 
mined by four methods described in Theory 

Method lo4 x error In parameter 
~. ~~ 

01 a2 a3 a4 

Matrix inversion 
Present work 47.5 24.6 2.35 0.51 
Roughton et al. 49.1 24.6 2.30 0.51 

log transformed 45.5 33.8 3.87 0.49 
Untransformed 45.1 27.1 3.77 0.49 

Monte Carlo 51.4 25.4 2.60 0.56 
Support planes 

Positive 47.8 23.8 2.39 0.51 
Negative 47.8 24.8 2.30 0.51 

‘Jack-knife’ 

Table 2. Convergence putli ,for the positive support plune of euch 
parameter 
Calculations were performed as described in the Methods section. 
For the first iteration the perturbation (d,) in the parameter was 
equal to one-tenth of the parameter value: subsequent perturbations 
were calculated by parabolic interpolation or extrapolation. Iter- 
ation was continued until the sum of squares (SJ was equal to 
So (1 + x/v), where So is the minimum sum of squares (= 5.049), 
v is the number of associated degrees of freedom (= 6 )  and x is 
between 0.95 and 1.05. That is to say, iteration was terminated when 
a value of S ,  between 5.848 and 5.933 was found 

~ ~ ~ 

Parameter Iteration 1 o 4 x U  104xd,  S ,  

! I 1  0 
1 
2 

0 2  0 
1 
2 

a3 0 
1 
2 

ad 0 
1 
2 
3 

96 1 
1057 
1009 

98.2 
108.0 
121.9 

33.87 
37.26 
36.26 

31.12 
34.23 
31.65 
31.63 

0 5.049 
96.11 8.448 
41.82 5.886 

0 5.049 
9.82 5.193 

23.77 5.857 

0 5.049 
3.387 6.743 
2.388 5.883 

0 5.049 
3.112 33.779 
0.533 5.956 
0.514 5.893 

it is to be anticipated that statistical fluctuations in 
the simulated data will lead to some variation from 
the expected values. Thus, groups of five simulations 
gave an error of a1 of 4 . 6 8 x l O p 3 ,  5.61 x ~ O - ~ ,  
5.97 x and 4.09 x which were pooled to give 
the value of 5.14 x reported in Table 1. Support 
planes were almost exactly symmetrical about the 
minimum and gave values very close to those obtained 
by matrix inversion. This suggests that the model is 
fairly linear around the minimum and this is confirmed 
by efficiency of the parabolic search method, which 
was used to locate the support planes. The conver- 
gence paths are shown in Table 2. 

DISCUSSION 

The data of Roughton et al. [ 5 ]  were chosen for 
this study for three reasons: (a) the raw data are 
reported in tabulated form and can be obtained with- 
out any subjective estimation from a graphical repre- 
sentation; (b) the data have been analyzed quantitati- 
vely, both by Roughton and by others [8,9]; (c) the 
data obey a fairly complex model [Eqn (I)] ,  which is 
known to be highly redundant [9] and, therefore, 
difficult to analyze. 

The matrix-inversion method for obtaining stan- 
dard errors gave satisfactory results with these data, 
and it might be argued that they are not a very stringent 
test of the value of the alternative methods presented 
here. On the other hand, it is necessary that there be 
some basis for comparison and the errors obtained by 
matrix inversion are most likely to be acceptable for 
this purpose. Roughton et al. [5] reported standard 
errors which are in good agreement with those reported 
here. 

The ‘jack-knife’ gave reliable results for the errors 
of u1 and u4, whereas the errors in u2 and 0 3  were over- 
estimated by about one-half. Elimination of the loga- 
rithmic transformation led to a more reliable result 
for u2 but the error in u3 was still overestimated. These 
results certainly confirm that the ‘jack-knife’ can be 
useful, but the discrepancies noted above give some 
cause for concern. In this particular example the differ- 
ence between the ‘jack-knife’ and matrix inversion is 
not large, but it is unexplained. Much larger discrep- 
ancies may occur in other situations and for this 
reason the ‘jack-knife’ is less attractive than the other 
methods described. 

The Monte Carlo method gave results which 
differed slightly from those obtained by matrix in- 
version, but this is an entirely natural consequence of 
the use of random numbers. There is no reason to 
believe that the method is biased, but it must be 
admitted that it is rather time-consuming. Fewer simu- 
lations would reduce the computational cost, but with 
a corresponding reduction in the reliability of the 
results. Roughton et al. [S] have considered a different 
formulation of Eqn (l), in which 01 is replaced 
with K I ,  0 2  with K1K2, u3 with KIKZK3 and a4 with 
K1 K2K3K4, where K I  - K4 represent association con- 
stants. We may calculate (for example) K4 as u4u3 and 
obtain its standard error from the covariance matrix 
using the formula given by Cleland [2], but when the 
matrix inversion fails then this method for obtaining 
the standard error of a combination of parameters is 
not available. Cornish-Bowden and Wong [ I ]  have 
pointed out that the ‘jack-knife’ may be applied to the 
individual determinations of 4 0 3  to obtain a value 
for the standard error. Equally we may use the results 
from the Monte Carlo method by calculating the root 
mean square of the deviation ( 4 )  for u4/u3. Applica- 
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tion of this method gave A; = 0.919 k 0.069, which 
agrees well with Roughton’s value of 0.926 f 0.066. 

The method of support planes is unusual in that 
it docs not involve any assumptions regarding the 
approximate linearity of the model around the mini- 
mum and will reveal the extent of any non-linearity 
in two ways. First the support planes are not sym- 
metrical about the minimum unless the model is 
exactly linear; thus, the asymmetry can be used as a 
guide to the extent of non-linearity. Second, non- 
linearity can reveal itself as a difference between 
matrix-inversion errors and those obtained using 
support planes. (That is to say, a cross-section through 
the sum-of-squares surface need not be parabolic, 
even if it is symmetrical about the minimum. Haarhoff 
[lo] has described a related method of assessing non- 
linearity.) Table 1 does not reveal any sign of non- 
linearity by either criterion, which agrees with the 
parabolic convergence path, which was observed in 
support plane calculations (Table 2). When the method 
of support planes gives different results from matrix 
inversion, the former values are a more realistic guidc 
to the precision of parameter estimates. 

The cheapest method for determining standard 
errors is the matrix-inversion method ; all other 
methods involve multiple refits of the data, subsets 

of it or of simulated sets. If computer time is readily 
available then the other methods described here can 
be useful. On the basis of the results presented in this 
paper, the support plane method is preferred as it 
gives the most complete information and is indepen- 
dent of the amount of non-linearity in the model. 

This work was initiated in the Department of Biochemistry. 
John Curtin School of Mcdical Research, Australian National Uni- 
versity and 1 am grateful for the use of their computing facilities. 
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