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What Happens when Data are Fitted to the Wrong Equation?
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In many problems of data analysis it is necessary to fit the data to a mathematical equation.
Random errors of measurement will be responsible for deviations between the data and
the equation, but superimposed on this there may be deviations that result from the
equation being an inadequate description ofthe system from which the data were obtained.
Plots of the residual (i.e. the difference between the experimental and calculated values of
the dependent variable) against each of the experimental variables have been previously
used to detect a misfit between the data and the equation. In the present paper, we show
that the shape of the residual plots may be used as a guide in choosing a more appropriate
equation. In addition, residual plots give useful information on the error structure of the
data, and hence the weighting factors that should be used in the analysis.

In biochemistry, as in other quantitative sciences,
it is often necessary to fit experimental data to a

mathematical equation or model. This process usually
involves minimizing a suitably weighted sum of
squares of the deviations between the data and the
model. For this purpose, methods of data treatment
have been steadily refined, particularly since com-
puters have become widely available. For example,
in kinetic studies of enzymes, the simple method of
determining values for the kinetic parameters by
drawing a straight line through the data in a Line-
weaver-Burk plot has largely been supplanted by the
more sophisticated methods of non-linear regression,
in which the data are directly fitted to an assumed
equation. These advances in the treatment of data
have largely been aimed at refining the values of the
parameters of a particular equation, although the
subjectivity associated with the choice of the equation
still remains. It is axiomatic that fitting data to the
wrong equation will give meaningless values for the
parameters, no matter how sophisticated the method
of fitting.
The purpose of the present paper is to show that,

when data are fitted to the wrong equation, the shape
of the residual plot contains valuable information
that can be utilized to determine the way in which the
equation should be modified to achieve a better
description of the data.

Several workers (Anscombe & Tukey, 1963;
Haarhoff, 1969; Bartfai & Mannervik, 1972; Reich
et al., 1972, 1974; Storer et al., 1975; Atkins, 1976)
have examined the properties of the normalized
residual (r) defined by eqn. (1):

r = (y-y)/a (1)
where y is the experimentally determined value of the
dependent variable, y is the expected value, calculated
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from the equation to which the data have been fitted,
and a is the expected standard deviation of y. Pro-
vided that the correct equation has been chosen and
the fitting procedure is appropriate, the values of the
residuals should be unrelated to the values of the
dependent or independent variables, or to extraneous
factors. Violation of this expectation indicates that
either the equation or the fitting procedure is in-
appropriate, and we have sought to use this fact in a
semi-quantitive fashion. It will be shown that plots of
the residual against each ofthe experimental variables
can have characteristic shapes that, when com-
pared with the shapes of standard sets of residual
plots for a given system, may be used to identify and
correct for deficiencies in the original model. In
addition, residual plots can also be used to give
information about the error structure of the data, and
hence the appropriate weighting factors to be used
in the analysis. Since it is only the shape of the resi-
dual plot that is important, it is not essential to know
the absolute values of a in eqn. (1), but merely a
factor proportional to it. Thus, if all data are thought
to have equal standard deviations, a may be given a
value of 1.0.
The proposed procedure is best illustrated by a

simple example. Consider the data of Fig. l(a), to
which a straight line has been fitted. Visual examina-
tion of the fit reveals no obvious deficiency, but if a
residual plot is constructed (Fig. lb) it is clear that
the residual depends to some extent on the value of
the independent variable. The residual plot shows
that the fitted line passes below the majority of
points at the extremes of x, and above them at
intermediate values of x. This suggests that a curved
line such as a parabola would describe the data more
accurately (Fig. lc), and this is confirmed by the
residual plot (Fig. ld). In this particular example,
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Fig. 1. Data and residual plots in a simple system
Identical sets of data are shown in (a) and (c). The data were fitted to a straight line (a), and a plot was constructed of
residual against the variable x (b). The same data were fitted to a parabola (c) and residuals plotted (d). The broken
lines in the residual plots are to emphasize the distribution of residuals.

virtually any curvilinear model would have elimin-
ated the correlation between the residual and the
independent variable. In practice, the type of equa-

tion would often be dictated by the underlying
theory. For instance, a quadratic function might
indicate a particular mechanism, whereas an expon-

ential function might be meaningless.
When a residual plot is found to indicate a misfit

between the equation and the data, it is apparent
that the equation must be modified if it is to be an

accurate description of the experimental results.
However, it is perhaps not so apparent that the shape
of the residual plot can indicate the manner in which
such a modification might be made. Frequently, of
course, the aim is not merely to describe the data, but
also to deduce a mechanism from the form of the
equation. Consider, for example, an enzyme kinetic
experiment, designed to study the effect of an in-
hibitor. Visual inspection of the data suggested that
the inhibition might be competitive, but, when the
data were fitted to the appropriate equation, residual
plots revealed a misfit. In principle, the data could
then be fitted to each of several other possible
equations, each of which would have different
mechanistic implications. However, the character-
istic shape of the original residual plots itself reveals
which of several feasible alternative equations is most
likely to be consistent with the data.

This process is illustrated below, by using a set of
simulated data computed from the equation for
hyperbolic competitive inhibition. Fig. 2(a) shows
the data, and the fit to the equation for competitive
inhibition, and Fig. 2(b) shows one of the residual
plots (residual against inhibitor concentration). The
curved envelope in which the residuals lie clearly
shows that the data are in conflict with the model.
Fig. 3 shows the general shape of the residual plots
when various types of data are fitted to the equation
for competitive inhibition. Comparison of Fig. 2(b)
with four plots of residual against inhibitor concen-
tration (Fig. 3, bottom row) suggests that the data
are likely to fit the equation for hyperbolic competi-
tive inhibition. Fig. 4(a) shows one of the residual
plots obtained when a set of actual data was fitted to
the equation for competitive inhibition. The data are
for the inhibition of Aerobacter aerogenes pre-
phenate dehydrogenase (EC 1.3.1.12) by bicarbon-
ate with respect to NAD+ (P. K. Dudzin'ski, un-
published work). Clearly, the plot resembles that
expected for parabolic inhibition (Fig. 3). When the
data were fitted to this latter model, the residual plot
shown in Fig. 4(b) was obtained. No obvious trends
are apparent, and this model may therefore be
considered to be an adequate description of the data.

In these particular examples, the plot of residual
against inhibitor concentration has the greatest
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Fig. 2. Data and residualplots for simulated enzyme-inhibition data
Theoretical velocities were calculated for five different substrate concentrations at each offive inhibitor concentrations,
by using the equation for hyperbolic competitive inhibition. A randomly selected normally distributed error was

applied to each data point, and these 25 simulated data points were fitted to the equation for competitive inhibition.
(a) Double-reciprocal plot of the data and the fitted lines. Each line corresponds to a different inhibitor concentration.
(b) Plot of residual against inhibitor concentration.
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Fig. 3. Diagnostic residual plots for data fitted to the equation for competitive inhibition
Theoretical sets of non-competitive, parabolic competitive, hyperbolic competitive and linear competitive inhibition
data were calculated, and fitted to the equation for competitive inhibition. Plots ofresidual against velocity, [substrate]-
and [inhibitor] were then constructed for each set. The equation from which the data was derived is listed at the top.
In each case, the broken lines indicate the general shape of the residual plots.
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Fig. 4. Residual plots for the inhibition of Aerobacter aerogenes prephenate dehydrogenase by bicarbonate with respect to
NAD+

Residuals are plotted against bicarbonate concentration, for situations in which the data have been fitted to either
competitive inhibition (a) or parabolic inhibition (b).

diagnostic power. Nevertheless, we recommend that
plots of residual against each of the experimental
variables should be examined, to ensure that all
patterns are consistent with the proposed model. It is
a relatively simple matter to generate the residual
plots during computer fitting of the data.

In any data-fitting problem, it is essential that
individual data points should be weighted according
to their expected variance (Wilkinson, 1961; Reich,
1970; Storer et al., 1975), and residual plots can be
used to estimate the appropriate weighting factors.
For example, a wedge-shaped plot of residual against
the dependent variable (Storer et al., 1975) will result
from incorrectly assuming the data points to have
equal variances and using equal weights in the
analysis, when, in fact, the variance is proportional
to the dependent variable. It should be borne in mind
that both a misfit and incorrect weighting may be
present simultaneously, which could lead to some
confusion. It is recommended that a few replicate
measurements should be made so that approximate
weighting factors may be used until a reasonably good
model is found, and then the weighting factors refined.
This process can be repeated until residual plots
reveal no trends.

It will occasionally happen, particularly with
small data sets, that a residual plot may appear to
indicate a trend that is, in fact, illusory. For this

reason, whenever a complex model is chosen over a
simpler one, it is essential that the fit to the more
complex model should be shown to be significantly
better by an appropriate statistical test. We have
found the F test (Haarhoff, 1969; Duggleby &
Dennis, 1974; McMinn & Ottaway, 1977) useful in
this connection.
F is calculated from eqn. (2):

(R2- R1) (n -Pi)
R1 (P1-P2)

(2)

Where R1 and Pi are the sum of squares of the
residuals and the number of parameters associated
with the more complex model, R2 and P2 are the
corresponding parameters of the simpler model, and
n is the number of data points. The degrees of
freedom of F are (Pl -P2) and (n-p1). For example,
the comparison between competitive and parabolic
inhibition for the data of Fig. 4 gives an F value that
would be obtained by chance in fewer than 1 in 1000
experiments if the system really exhibits competitive
inhibition. This is sufficiently unlikely to provide
strong support for the view that the system does
exhibit parabolic inhibition, We would endorse the
view of Atkins (1976) that several statistical tests
should be used wherever practical.
Although most of the results presented in the

present paper were obtained with simulated data, the
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procedure has been used by members of this Depart-
ment with experimental data over the past 2 years,
and has proved to be valuable in practice. The
examples presented are mainly concerned with
enzyme kinetic data, but we expect that residual
plots would be useful in a variety of data-fitting
problems, in both biochemistry and other sciences.

We gratefully acknowledge the interest and encourage-
ment shown by Dr. John F. Morrison during the develop-
ment of this work, and thank Ms. Paulina Dudzinski for
the data on the inhibition of prephenate dehydrogenase.
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